A334694 a(n) = (n/4)*(n^3+2*n^2+5*n+8).
0, 4, 17, 51, 124, 260, 489, 847, 1376, 2124, 3145, 4499, 6252, 8476, 11249, 14655, 18784, 23732, 29601, 36499, 44540, 53844, 64537, 76751, 90624, 106300, 123929, 143667, 165676, 190124, 217185, 247039, 279872, 315876, 355249, 398195, 444924, 495652, 550601, 609999, 674080, 743084, 817257, 896851, 982124, 1073340
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to stained glass windows
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
LinearRecurrence[{5,-10,10,-5,1},{0,4,17,51,124},50] (* or *) A334694[n_]:=n/4(n^3+2n^2+5n+8);Array[A334694,50,0] (* Paolo Xausa, Nov 08 2023 *)
-
PARI
concat(0, Vec(x*(4 - 3*x + 6*x^2 - x^3) / (1 - x)^5 + O(x^40))) \\ Colin Barker, May 27 2020
Formula
Satisfies the identity a(n) = A306302(n) + Sum_{k=3..(n+1)} binomial(k-1,2)*A333275(n,2*k). E.g. for n=4 we have a(4) = 104 + 8*1 + 2*3 + 1*6 = 124.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(4 - 3*x + 6*x^2 - x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)
Comments