cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334697 a(n) is the number of interior points in the n-th figure shown in A255011 (meaning the figure with 4n points on the perimeter), counted with multiplicity.

Original entry on oeis.org

1, 50, 363, 1360, 3665, 8106, 15715, 27728, 45585, 70930, 105611, 151680, 211393, 287210, 381795, 498016, 638945, 807858, 1008235, 1243760, 1518321, 1836010, 2201123, 2618160, 3091825, 3627026, 4228875, 4902688, 5653985, 6488490, 7412131, 8431040, 9551553, 10780210, 12123755, 13589136, 15183505, 16914218, 18788835
Offset: 1

Views

Author

Keywords

Examples

			Scott Shannon's illustration for n=2 shows 29 interior intersection points, of which 20 are simple intersections, 8 are triple intersections, and one (the central point) is a 4-fold intersection. A point where d lines meet is equivalent to C(d,2) simple points. So a(2) = 20*1 + 8*3 + 1*6 = 50.
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 + 45*x + 123*x^2 + 35*x^3) / (1 - x)^5 + O(x^30)) \\ Colin Barker, May 31 2020

Formula

Theorem: a(n) = n*(17*n^3-30*n^2+19*n-4)/2.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(1 + 45*x + 123*x^2 + 35*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)