cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334698 a(n) is the total number of points (both boundary and interior points) in the n-th figure shown in A255011 (meaning the figure with 4n points on the perimeter), where the interior points are counted with multiplicity.

Original entry on oeis.org

5, 58, 375, 1376, 3685, 8130, 15743, 27760, 45621, 70970, 105655, 151728, 211445, 287266, 381855, 498080, 639013, 807930, 1008311, 1243840, 1518405, 1836098, 2201215, 2618256, 3091925, 3627130, 4228983, 4902800, 5654101, 6488610, 7412255, 8431168, 9551685, 10780346, 12123895, 13589280, 15183653, 16914370, 18788991
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition: Place n-1 points in general position on each side of a square, and join every pair of the 4*n+4 boundary points by a chord; sequence gives number of vertices in the resulting planar graph. "In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet. - Scott R. Shannon and N. J. A. Sloane, Nov 05 2023
Equivalently, this is A334697(n) + 4*n.
This is an upper bound on A331449.

Crossrefs

For the "general position" version, see also A367121 (regions), A367122 (edges), and A367117.

Programs

  • Mathematica
    A334698[n_]:=n(17n^3-30n^2+19n+4)/2;Array[A334698,50] (* or *)
    LinearRecurrence[{5,-10,10,-5,1},{5,58,375,1376,3685},50] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    Vec(x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5 + O(x^40)) \\ Colin Barker, May 31 2020

Formula

Theorem: a(n) = n*(17*n^3-30*n^2+19*n+4)/2.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
a(n+1) = A367122(n) - A367121(n) + 1 by Euler's formula.

Extensions

Edited by N. J. A. Sloane, Nov 13 2023