A334701 Consider the figure made up of a row of n adjacent congruent rectangles, with diagonals of all possible rectangles drawn; a(n) = number of interior vertices where exactly two lines cross.
1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, 1912, 2622, 3624, 4690, 6096, 7686, 9764, 12010, 14866, 18026, 21904, 25918, 30818, 36246, 42654, 49246, 57006, 65334, 75098, 85414, 97384, 110138, 124726, 139642, 156286, 174018, 194106, 214570, 237534, 261666, 288686, 316770, 348048, 380798, 416524, 452794, 492830
Offset: 1
Keywords
Links
- Lars Blomberg, Table of n, a(n) for n = 1..500
- Lars Blomberg, Array (s,n) of the number of internal vertices where exactly s=2..501 lines cross in a figure made up of a row of n=1..500 adjacent congruent rectangles, with diagonals of all possible rectangles drawn. Rows are stored comma-separated.
- Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
- Scott R. Shannon, Colored illustration showing regions for n=1
- Scott R. Shannon, Images of vertices for n=1.
- Scott R. Shannon, Colored illustration showing regions for n=2
- Scott R. Shannon, Images of vertices for n=2.
- Scott R. Shannon, Colored illustration showing regions for n=3
- Scott R. Shannon, Images of vertices for n=3.
- Scott R. Shannon, Colored illustration showing regions for n=4
- Scott R. Shannon, Images of vertices for n=4.
- Scott R. Shannon, Colored illustration showing regions for n=5
- Scott R. Shannon, Images of vertices for n=5
- Scott R. Shannon, Colored illustration showing regions for n=6
- Scott R. Shannon, Images of vertices for n=6
- Scott R. Shannon, Images of vertices for n=7
- Scott R. Shannon, Images of vertices for n=8
- Scott R. Shannon, Images of vertices for n=9.
- Scott R. Shannon, Images of vertices for n=11.
- Scott R. Shannon, Images of vertices for n=14.
- Index entries for sequences related to stained glass windows
Crossrefs
Formula
Conjecture: As n -> oo, a(n) ~ C*n^4/Pi^2, where C is about 0.95 (compare A115004, A331761). - N. J. A. Sloane, Jul 03 2020
Extensions
More terms from Lars Blomberg, Jun 17 2020
Comments