cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A189413 Number of convex quadrilaterals on an n X n grid (or geoboard).

Original entry on oeis.org

0, 1, 70, 1038, 7398, 35727, 130768, 400116, 1062016, 2531001, 5529310, 11272710, 21639022, 39559591, 69283632, 116910052, 190977408, 303286461, 469431366, 710400658, 1053055398, 1532253131, 2192246528, 3088876728, 4290532688, 5882825641, 7969711934, 10677299074, 14156978846, 18591603883, 24195121104
Offset: 1

Views

Author

Martin Renner, Apr 21 2011

Keywords

Comments

If four points are chosen at random from an n X n grid, the probability that they form a convex quadrilateral approaches 25/36 as n increases, by Sylvester's Four-Point Theorem (see the link). Thanks to Ed Pegg Jr for this comment. - N. J. A. Sloane, Jun 15 2020

Crossrefs

This is the main diagonal of A334711.

Extensions

a(6) - a(22) from Nathaniel Johnston, Apr 25 2011
Terms beyond a(22) from Tom Duff. - N. J. A. Sloane, Jun 23 2020

A334708 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four collinear points from an n X k grid.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 5, 2, 0, 2, 5, 15, 10, 3, 3, 10, 15, 35, 30, 15, 10, 15, 30, 35, 70, 70, 45, 29, 29, 45, 70, 70, 126, 140, 105, 72, 64, 72, 105, 140, 126, 210, 252, 210, 157, 129, 129, 157, 210, 252, 210, 330, 420, 378, 302, 248, 234, 248, 302, 378, 420, 330
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, ...
0, 0, 0, 2, 10, 30, 70, 140, 252, 420, 660, 990, ...
0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, ...
1, 2, 3, 10, 29, 72, 157, 302, 531, 874, 1361, 2028, ...
5, 10, 15, 29, 64, 129, 248, 442, 747, 1196, 1825, 2679, ...
15, 30, 45, 72, 129, 234, 405, 666, 1065, 1638, 2439, 3510, ...
35, 70, 105, 157, 248, 405, 660, 1020, 1545, 2276, 3283, 4605, ...
70, 140, 210, 302, 442, 666, 1020, 1524, 2220, 3154, 4412, 6030, ...
126, 252, 378, 531, 747, 1065, 1545, 2220, 3156, 4362, 5940, 7923, ...
210, 420, 630, 874, 1196, 1638, 2276, 3154, 4362, 5928, 7914, 10350, ...
...
The initial antidiagonals are:
0
0, 0
0, 0, 0
1, 0, 0, 1
5, 2, 0, 2, 5
15, 10, 3, 3, 10, 15
35, 30, 15, 10, 15, 30, 35
70, 70, 45, 29, 29, 45, 70, 70
126, 140, 105, 72, 64, 72, 105, 140, 126
210, 252, 210, 157, 129, 129, 157, 210, 252, 210
330, 420, 378, 302, 248, 234, 248, 302, 378, 420, 330
...
		

Crossrefs

The main diagonal is A178256.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334709 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is strictly inside the triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 48, 48, 0, 0, 0, 0, 144, 240, 144, 0, 0, 0, 0, 348, 716, 716, 348, 0, 0, 0, 0, 700, 1712, 2100, 1712, 700, 0, 0, 0, 0, 1280, 3404, 4984, 4984, 3404, 1280, 0, 0, 0, 0, 2144, 6176, 9900, 11604, 9900, 6176, 2144, 0, 0, 0, 0, 3400, 10336, 17936, 22936, 22936, 17936, 10336, 3400, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 8, 48, 144, 348, 700, 1280, 2144, 3400, 5120, 7440, ...
0, 0, 48, 240, 716, 1712, 3404, 6176, 10336, 16288, 24480, 35504, ...
0, 0, 144, 716, 2100, 4984, 9900, 17936, 29924, 47080, 70700, 102460, ...
0, 0, 348, 1712, 4984, 11604, 22936, 41372, 68844, 108132, 161964, 234228, ...
0, 0, 700, 3404, 9900, 22936, 45184, 81320, 135192, 212152, 317492, 458812, ...
0, 0, 1280, 6176, 17936, 41372, 81320, 145648, 241544, 378400, 565636, 816520, ...
0, 0, 2144, 10336, 29924, 68844, 135192, 241544, 399656, 625232, 933808, 1346928, ...
0, 0, 3400, 16288, 47080, 108132, 212152, 378400, 625232, 976552, 1457172, 2100112, ...
...
The initial antidiagonals are:
0,
0, 0,
0, 0, 0,
0, 0, 0, 0,
0, 0, 8, 0, 0,
0, 0, 48, 48, 0, 0,
0, 0, 144, 240, 144, 0, 0,
0, 0, 348, 716, 716, 348, 0, 0,
0, 0, 700, 1712, 2100, 1712, 700, 0, 0,
0, 0, 1280, 3404, 4984, 4984, 3404, 1280, 0, 0,
0, 0, 2144, 6176, 9900, 11604, 9900, 6176, 2144, 0, 0,
0, 0, 3400, 10336, 17936, 22936, 22936, 17936, 10336, 3400, 0, 0,
...
		

Crossrefs

The main diagonal is A334712.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334710 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is on one of the edges of the triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 0, 0, 32, 48, 32, 0, 0, 100, 168, 168, 100, 0, 0, 240, 456, 532, 456, 240, 0, 0, 490, 990, 1312, 1312, 990, 490, 0, 0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0, 0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0, 0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020

Examples

			The initial rows of the array are:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
0, 0, 6, 32, 100, 240, 490, 896, 1512, 2400, 3630, 5280, ...
0, 6, 48, 168, 456, 990, 1920, 3360, 5520, 8550, 12720, 18216, ...
0, 32, 168, 532, 1312, 2652, 4972, 8420, 13452, 20480, 29980, 42288, ...
0, 100, 456, 1312, 3088, 5964, 10816, 17768, 27840, 41652, 60040, 83448, ...
0, 240, 990, 2652, 5964, 11340, 20142, 32436, 50004, 73704, 105282, 144936, ...
0, 490, 1920, 4972, 10816, 20142, 35264, 55916, 84960, 123690, 174976, 238512, ...
0, 896, 3360, 8420, 17768, 32436, 55916, 88088, 132708, 191588, 268972, 363876, ...
0, 1512, 5520, 13452, 27840, 50004, 84960, 132708, 198912, 285312, 397968, 534888, ...
0, 2400, 8550, 20480, 41652, 73704, 123690, 191588, 285312, 407744, 566046, 757008, ...
...
The initial antidiagonals are:
0
0, 0
0, 0, 0
0, 6, 6, 0
0, 32, 48, 32, 0
0, 100, 168, 168, 100, 0
0, 240, 456, 532, 456, 240, 0
0, 490, 990, 1312, 1312, 990, 490, 0
0, 896, 1920, 2652, 3088, 2652, 1920, 896, 0
0, 1512, 3360, 4972, 5964, 5964, 4972, 3360, 1512, 0
0, 2400, 5520, 8420, 10816, 11340, 10816, 8420, 5520, 2400, 0
0, 3630, 8550, 13452, 17768, 20142, 20142, 17768, 13452, 8550, 3630, 0
...
		

Crossrefs

The main diagonal is A334713.
Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
For three points there are just two possible arrangements: see A334704 and A334705.

A334713 Number of ways to select four points from an n X n grid so that three of them form a triangle of nonzero area and the extra point is on one of the edges of the triangle.

Original entry on oeis.org

0, 0, 48, 532, 3088, 11340, 35264, 88088, 198912, 407744, 783344, 1388196, 2392592, 3889292, 6124032, 9394536, 14058816, 20345400, 29034288, 40356156, 55487952, 75207892, 100445632, 131773104, 171900864, 221418336, 282240816, 356468556, 447353616, 555069252, 686394560, 840316880, 1023123264, 1238261952
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020 - Jun 22 2020

Crossrefs

The main diagonal of A334710.

A334712 Number of ways to select four points from an n X n grid so that three of them form a triangle of nonzero area and the extra point is strictly inside the triangle.

Original entry on oeis.org

0, 0, 8, 240, 2100, 11604, 45184, 145648, 399656, 976552, 2172328, 4500816, 8736172, 16135996, 28493760, 48400296, 79500936, 126909720, 197253768, 299683032, 445664700, 650291092, 932742112, 1317391344, 1833532544, 2518622024, 3417812896, 4585946096, 6088659404, 8006284316, 10430982968, 13476148160
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2020

Keywords

Comments

Computed by Tom Duff, Jun 15 2020 - Jun 22 2020

Crossrefs

The main diagonal of A334709.
Showing 1-6 of 6 results.