This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334731 #20 Sep 08 2022 08:46:25 %S A334731 1,1,1,1,1,12,1,1,1,2,1,48,1,4,3,1,1,36,1,4,1,4,1,576,1,2,1,224,1, %T A334731 5184,1,1,3,2,1,144,1,4,1,40,1,2304,1,16,9,4,1,2304,1,2,9,4,1,864,1, %U A334731 1792,1,2,1,995328,1,4,1,1,1,20736,1,4,3,128,1,5184,1,2 %N A334731 a(n) = Product_{d|n} gcd(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955). %H A334731 Antti Karttunen, <a href="/A334731/b334731.txt">Table of n, a(n) for n = 1..16384</a> %F A334731 a(p) = 1 for p = primes (A000040). %e A334731 a(6) = gcd(sigma(1), pod(1)) * gcd(sigma(2), pod(2)) * gcd(sigma(3), pod(3)) * gcd(sigma(6), pod(6)) = gcd(1, 1) * gcd(3, 2) * gcd(4, 3) * gcd(12, 36) = 1 * 1 * 1 * 12 = 12. %t A334731 a[n_] := Product[GCD[DivisorSigma[1, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* _Amiram Eldar_, May 09 2020 *) %o A334731 (Magma) [&*[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]] %o A334731 (PARI) pod(n) = vecprod(divisors(n)); %o A334731 a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(sigma(d[k]), pod(d[k]))); \\ _Michel Marcus_, May 09-11 2020 %Y A334731 Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))). %Y A334731 Cf. A000005 (tau(n)), A000203 (sigma(n)), A306682 (gcd(sigma(n), pod(n))). %K A334731 nonn %O A334731 1,6 %A A334731 _Jaroslav Krizek_, May 09 2020