This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334739 #25 Jan 03 2021 21:15:52 %S A334739 0,0,0,0,0,1,0,1,0,1,0,3,0,1,1,2,0,3,0,3,1,1,0,5,0,1,1,3,0,3,0,5,1,1, %T A334739 1,6,0,1,1,5,0,3,0,3,3,1,0,8,0,3,1,3,0,5,1,5,1,1,0,6,0,1,3,6,1,3,0,3, %U A334739 1,3,0,10,0,1,3,3,1,3,0,8,2,1,0,6,1,1,1,5,0,6,1,3,1,1,1,10,0,3,3,6 %N A334739 Number of unordered factorizations of n with 2 different parts > 1. %C A334739 a(n) depends only on the prime signature of n. E.g., a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1). %H A334739 Jacob Sprittulla, <a href="/A334739/b334739.txt">Table of n, a(n) for n = 1..1000</a> %H A334739 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A334739 (Joint) D.g.f.: Product_{n>=2} ( 1 + t/(n^s-1) ). %F A334739 Recursion: a(n) = h_2(n), where h_l(n) * log(n) = Sum_{ d^i | n } Sum_{j=1..l} (-1)^(j+1) * h_{l-j}(n/d^i) * log(d), with h_l(n)=1 if n=1 and l=0 otherwise h_l(n)=0. %e A334739 a(24) = 5 = #{ (12,2), (6,4), (8,3), (6,2,2), (3,2,2,2) }. %o A334739 (R) %o A334739 maxe <- function(n,d) { i=0; while( n%%(d^(i+1))==0 ) { i=i+1 }; i } %o A334739 uhRec <- function(n,l=1) { %o A334739 uh = 0 %o A334739 if( n<=0 ) { %o A334739 return(0) %o A334739 } else if(n==1) { %o A334739 return(ifelse(l==0,1,0)) %o A334739 } else if(l<=0) { %o A334739 return(0) %o A334739 } else if( (n>=2) && (l>=1) ) { %o A334739 for(d in 2:n) { %o A334739 m = maxe(n,d) %o A334739 if(m>=1) for(i in 1:m) for(j in 1:min(i,l)) { %o A334739 uhj = uhRec( n/d^i, l-j ) %o A334739 uh = uh + log(d)/log(n) * (-1)^(j+1) * choose(i,j) * uhj %o A334739 } %o A334739 } %o A334739 return(round(uh,3)) %o A334739 } %o A334739 } %o A334739 n=100; l=2; sapply(1:n,uhRec,l) # A334739 %o A334739 n=100; l=3; sapply(1:n,uhRec,l) # A334740 %Y A334739 Cf. A334740 (3 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778. %K A334739 nonn %O A334739 1,12 %A A334739 _Jacob Sprittulla_, May 09 2020