This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334740 #16 Jun 14 2020 00:49:37 %S A334740 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0, %T A334740 0,1,0,0,0,1,0,1,0,0,0,0,0,3,0,0,0,0,0,1,0,1,0,0,0,4,0,0,0,1,0,1,0,0, %U A334740 0,1,0,5,0,0,0,0,0,1,0,3,0,0,0,4,0,0,0,1,0,4,0,0,0,0,0,8,0,0,0,1 %N A334740 Number of unordered factorizations of n with 3 different parts > 1. %C A334740 a(n) depends only on the prime signature of n. E.g. a(12)=a(75), since 12=2^2*3 and 75=5^2*3 share the same prime signature (2,1). %H A334740 Jacob Sprittulla, <a href="/A334740/b334740.txt">Table of n, a(n) for n = 1..1000</a> %e A334740 a(48) = 3 = #{ (6,4,2), (8,3,2), (4,3,2,2) }. %o A334740 (R) %o A334740 maxe <- function(n, d) { i=0; while( n%%(d^(i+1))==0 ) { i=i+1 }; i } %o A334740 uhRec <- function(n, l=1) { %o A334740 uh = 0 %o A334740 if( n<=0 ) { %o A334740 return(0) %o A334740 } else if(n==1) { %o A334740 return(ifelse(l==0, 1, 0)) %o A334740 } else if(l<=0) { %o A334740 return(0) %o A334740 } else if( (n>=2) && (l>=1) ) { %o A334740 for(d in 2:n) { %o A334740 m = maxe(n, d) %o A334740 if(m>=1) for(i in 1:m) for(j in 1:min(i, l)) { %o A334740 uhj = uhRec( n/d^i, l-j ) %o A334740 uh = uh + log(d)/log(n) * (-1)^(j+1) * choose(i, j) * uhj %o A334740 } %o A334740 } %o A334740 return(round(uh, 3)) %o A334740 } %o A334740 } %o A334740 n=100; l=2; sapply(1:n, uhRec, l) # A334739 %o A334740 n=100; l=3; sapply(1:n, uhRec, l) # A334740 %Y A334740 Cf. A334739 (2 different parts), A072670 (2 parts), A122179 (3 parts), A211159 (2 distinct parts), A122180 (3 distinct parts), A001055, A045778 %K A334740 nonn %O A334740 1,48 %A A334740 _Jacob Sprittulla_, May 09 2020