cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.

This page as a plain text file.
%I A334748 #20 Jun 19 2020 04:25:12
%S A334748 3,6,5,12,15,10,21,24,27,30,33,20,39,42,7,48,51,54,57,60,35,66,69,40,
%T A334748 75,78,45,84,87,14,93,96,55,102,105,108,111,114,65,120,123,70,129,132,
%U A334748 135,138,141,80,147,150,85,156,159,90,165,168,95,174,177,28,183,186,189
%N A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.
%C A334748 A permutation of A028983.
%C A334748 A007417 (which has asymptotic density 3/4) lists index n such that a(n) = 3n. The sequence maps the terms of A007417 1:1 onto A145204\{0}, defining a bijection between them.
%C A334748 Similarly, bijections are defined from the odd numbers (A005408) to the nonsquare odd numbers (A088828), from the positive even numbers (A299174) to A088829, from A003159 to the nonsquares in A003159, and from A325424 to the nonsquares in A036668. The latter two bijections are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.
%F A334748 a(n) = n * p / (A034386(p-1)/2), where p = A284723(A007913(n)).
%F A334748 a(n) = A334747(A334747(n)).
%F A334748 a(n) = A331590(3, n) = A225546(4 * A225546(n)).
%F A334748 a(2*n) = 2 * a(n).
%F A334748 a(A019565(n)) = A019565(n+2).
%F A334748 a(k * m^2) = a(k) * m^2.
%F A334748 a(A003961(n)) = A003961(A334747(n)).
%F A334748 a(A070826(n)) = prime(n+1).
%F A334748 A048675(a(n)) = A048675(n) + 2.
%F A334748 A008833(a(n)) = A008833(n).
%F A334748 A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
%F A334748 a(A007417(n)) = A145204(n+1) = 3 * A007417(n).
%e A334748 84 = 21*4 has squarefree part 21 (and square part 4). The smallest odd prime absent from 21 = 3*7 is 5 and the product of all smaller odd primes is 3. So a(84) = 84*5/3 = 140.
%o A334748 (PARI) a(n) = {my(c=core(n), m=n); forprime(p=3, , if(c % p, m*=p; break, m/=p)); m;} \\ _Michel Marcus_, May 22 2020
%Y A334748 Permutation of A028983.
%Y A334748 Row 3, and therefore column 3, of A331590. Cf. A334747 (row 2).
%Y A334748 A007913, A034386, A225546, A284723 are used in formulas defining the sequence.
%Y A334748 The formula section details how the sequence maps the terms of A003961, A019565, A070826; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
%Y A334748 Subsequences: A016051, A145204\{0}, A329575.
%Y A334748 Bijections are defined that relate to A003159, A005408, A007417, A036668, A088828, A088829, A299174, A325424.
%K A334748 nonn,easy
%O A334748 1,1
%A A334748 _Peter Munn_, May 09 2020