This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334761 #14 Jun 19 2022 23:23:31 %S A334761 60,120,180,240,300,360,390,420,480,540,600,660,680,720,780,840,900, %T A334761 960,1020,1080,1140,1170,1200,1260,1320,1360,1380,1400,1440,1500,1560, %U A334761 1620,1680,1740,1800,1860,1920,1950,1980,2030,2040,2100,2160,2220,2280,2340,2400 %N A334761 Perimeters of Pythagorean triangles whose hypotenuse divides the difference of squares of its long and short legs. %C A334761 The smallest terms corresponding to 2,...,5 triangles are a(15) = 780, a(191) = 9360, a(3324) = 159120, and a(19433) = 928200, respectively. - _Giovanni Resta_, May 11 2020 %H A334761 Giovanni Resta, <a href="/A334761/b334761.txt">Table of n, a(n) for n = 1..10000</a> %H A334761 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a> %H A334761 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean Triple</a>. %H A334761 <a href="/index/Ps#PyTrip">Index entries related to Pythagorean Triples</a>. %e A334761 a(1) = 60; the triangle [15,20,25] has perimeter 60. The difference of squares of its long and short leg lengths is (20^2 - 15^2) = 400 - 225 = 175 and 25|175. %t A334761 Reap[Do[s = Solve[x^2 + y^2 == (p-x-y)^2 && z^2 == x^2 + y^2 && 0<x<y<z && p - x - y > 0, {x, y, z}, Integers]; If[s != {} && AnyTrue[{x, y , z} /. s, Mod[#[[2]]^2 - #[[1]]^2, #[[3]]] == 0 &], Print@Sow@p], {p, 12, 1000, 2}]][[2, 1]] (* _Giovanni Resta_, May 11 2020 *) %Y A334761 Cf. A005044, A010814. %K A334761 nonn %O A334761 1,1 %A A334761 _Wesley Ivan Hurt_, May 10 2020 %E A334761 Terms a(31) and beyond from _Giovanni Resta_, May 11 2020