cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334766 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the prime tower factorization of a(n+1) can be obtained from that of a(n) by adding or removing exactly one prime number.

This page as a plain text file.
%I A334766 #11 May 14 2020 01:23:08
%S A334766 1,2,4,12,6,3,9,18,36,144,48,16,80,20,10,5,15,30,60,180,90,45,225,75,
%T A334766 25,50,100,300,150,450,900,3600,720,240,1200,400,2800,560,112,28,14,7,
%U A334766 21,42,84,252,126,63,315,105,35,70,140,420,210,630,1260,5040,1008
%N A334766 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, the prime tower factorization of a(n+1) can be obtained from that of a(n) by adding or removing exactly one prime number.
%C A334766 The prime tower factorization of a number is defined in A182318.
%C A334766 For any n > 0, a(n+1) is either a multiple or a divisor of a(n).
%C A334766 For any prime number p, the sequence contains a multiple of p.
%H A334766 Rémy Sigrist, <a href="/A334766/b334766.txt">Table of n, a(n) for n = 1..10000</a>
%H A334766 Rémy Sigrist, <a href="/A334766/a334766.gp.txt">PARI program for A334766</a>
%F A334766 abs(A106490(a(n+1)) - A106490(a(n))) = 1.
%e A334766 The first terms, alongside their prime tower factorizations, are:
%e A334766   n   a(n)  Prime tower factorization of a(n)
%e A334766   --  ----  ---------------------------------
%e A334766    1     1  1
%e A334766    2     2  2
%e A334766    3     4  2^2
%e A334766    4    12  2^2   * 3
%e A334766    5     6  2     * 3
%e A334766    6     3          3
%e A334766    7     9          3^2
%e A334766    8    18  2     * 3^2
%e A334766    9    36  2^2   * 3^2
%e A334766   10   144  2^2^2 * 3^2
%e A334766   11    48  2^2^2 * 3
%e A334766   12    16  2^2^2
%e A334766   13    80  2^2^2       * 5
%e A334766   14    20  2^2         * 5
%e A334766   15    10  2           * 5
%e A334766   16     5                5
%o A334766 (PARI) See Links section.
%Y A334766 Cf. A106490, A182318, A298480.
%K A334766 nonn
%O A334766 1,2
%A A334766 _Rémy Sigrist_, May 10 2020