This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334768 #31 May 12 2020 04:15:53 %S A334768 0,0,0,0,4,12,9,20,30,28,67,0,70,44,115,52,188,0,284,68,284,76,405,0, %T A334768 714,92,573,0,604,0,1182,116,668,124,1271,0,1960,0,795,148,1642,0, %U A334768 2680,164,1570,172,2183,0,3974,188,3024,0,2706,0,5354,212,2842,0,3799 %N A334768 Self-convolution of A061397. %C A334768 If any term of even index greater than 2 is equal to 0 then the Goldbach conjecture would be disproved. %H A334768 Alois P. Heinz, <a href="/A334768/b334768.txt">Table of n, a(n) for n = 0..10000</a> %F A334768 a(n) = Sum_{k=1..n-1} P(k)*P(n-k) where P(k) = A061397(k). %p A334768 a:= n-> (f-> add(f(j)*f(n-j), j=0..n))(k-> `if`(isprime(k), k, 0)): %p A334768 seq(a(n), n=0..60); # _Alois P. Heinz_, May 11 2020 %t A334768 Table[Sum[If[PrimeQ[k], k, 0]*If[PrimeQ[n-k], n-k, 0], {k, 0, n}], {n, 0, 100}] (* _Vaclav Kotesovec_, May 10 2020 *) %o A334768 (Python) %o A334768 def a(n): %o A334768 A061397 = [0]+[factorial(2*i-1)%(i**2) for i in range(1,n+1)] %o A334768 sum = 0 %o A334768 for i in range(1,n): %o A334768 sum += A061397[i] * A061397[n-i] %o A334768 return sum %o A334768 (PARI) P(n) = if (isprime(n), n); %o A334768 a(n) = sum(k=1, n-1, P(k)*P(n-k)); \\ _Michel Marcus_, May 10 2020 %Y A334768 Cf. A000040, A010051, A061397, A073610. %K A334768 nonn,easy %O A334768 0,5 %A A334768 _Lawrence Pepper_, May 10 2020