This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334769 #27 May 20 2020 16:00:10 %S A334769 151,233,543,599,937,993,1379,1483,1589,1693,2359,2391,3753,3785,8607, %T A334769 9559,10707,11547,13029,13869,15017,15969,22115,22243,23627,23755, %U A334769 25397,25525,26909,27037,33151,34591,35535,36015,37687,38231,39047,40679,57625,59257 %N A334769 Numbers m that generate rotationally symmetrical XOR-triangles T(m) that have central triangles of zeros. %C A334769 An XOR-triangle T(m) is an inverted 0-1 triangle formed by choosing as top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit. %C A334769 A334556 is the sequence of rotationally symmetrical T(m) (here abbreviated RST). %C A334769 A central zero-triangle (CZT) is a field of contiguous 0-bits in T(m) surrounded on all sides by a layer of 1 bits, and generally k > 1 bits of any parity. Alternatively, these might be referred to as "central bubbles". %H A334769 Rémy Sigrist, <a href="/A334769/b334769.txt">Table of n, a(n) for n = 1..10000</a> %H A334769 Michael De Vlieger, <a href="http://vincico.com/seq/a334769.html">Central zero-triangles in rotationally symmetrical XOR-Triangles</a>, 2020. %H A334769 Michael De Vlieger, <a href="/A334769/a334769_2.txt">Basic aspects of rotationally symmetrical XOR-triangles that have central zero triangles</a> %H A334769 Michael De Vlieger, <a href="/A334769/a334769_3.png">Diagram montage</a> of XOR-triangles for terms 1 <= n <= 1000. %H A334769 Rémy Sigrist, <a href="/A334769/a334769_1.txt">C program for A334769K</a> %H A334769 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A334769 <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a> %e A334769 For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity: %e A334769 1 . . 1 . 1 1 1 %e A334769 1 . 1 1 1 . . %e A334769 1 1 . . 1 . %e A334769 . 1 . 1 1 %e A334769 1 1 1 . %e A334769 . . 1 %e A334769 . 1 %e A334769 1 %e A334769 At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Thus 151 is in the sequence. %e A334769 For n = 11, we have rotationally symmetrical T(11): %e A334769 1 . 1 1 %e A334769 1 1 . %e A334769 . 1 %e A334769 1 %e A334769 Since there is no CZT, 11 is not in the sequence. %e A334769 For n = 91, we have rotationally symmetrical T(91): %e A334769 1 . 1 1 . 1 1 %e A334769 1 1 . 1 1 . %e A334769 . 1 1 . 1 %e A334769 1 . 1 1 %e A334769 1 1 . %e A334769 . 1 %e A334769 1 %e A334769 This XOR-triangle has many bubbles but none in the center, so 91 is not in the sequence. %t A334769 Block[{s, t = Array[NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &] &, 2^18]}, s = Select[Range[Length@ t], Function[{n, h}, (Reverse /@ Transpose[MapIndexed[PadRight[#, h, -1] &, t[[n]] ]] /. -1 -> Nothing) == t[[n]]] @@ {#, IntegerLength[#, 2]} &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, n] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Length@ s - 1, 2] ] %o A334769 (C) See Links section. %Y A334769 Cf. A038554, A070939, A334556, A334770, A334771, A334796, A334836. %K A334769 nonn %O A334769 1,1 %A A334769 _Michael De Vlieger_, May 10 2020 %E A334769 Data corrected by _Rémy Sigrist_, May 15 2020