This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334773 #11 Jan 11 2021 13:28:54 %S A334773 3,12,57,30,360,705,60,1400,7968,7617,105,4170,51750,163584,78357,168, %T A334773 10437,241080,1830000,3293184,791589,252,23072,894201,13562040, %U A334773 64168750,65968128,7944321,360,46440,2804480,75278553,759940800,2246625000,1319854080,79541625 %N A334773 Array read by antidiagonals: T(n,k) is the number of permutations of k indistinguishable copies of 1..n with exactly 2 local maxima. %H A334773 Andrew Howroyd, <a href="/A334773/b334773.txt">Table of n, a(n) for n = 2..1276</a> %F A334773 T(n,k) = Sum_{j=0..n-2} P(k-1,3) * P(k-2,2) * P(k,2)^(n-2-j) * P(k,4)^j + 2 * (n-j-2) * P(k-1,3)^2 * P(k,2)^(n-3-j) * P(k,4)^j where P(n,k) = binomial(n+k-1,k-1). %F A334773 T(n,k) = 3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2. %e A334773 Array begins: %e A334773 ====================================================== %e A334773 n\k | 2 3 4 5 %e A334773 ----|------------------------------------------------- %e A334773 2 | 3 12 30 60 ... %e A334773 3 | 57 360 1400 4170 ... %e A334773 4 | 705 7968 51750 241080 ... %e A334773 5 | 7617 163584 1830000 13562040 ... %e A334773 6 | 78357 3293184 64168750 759940800 ... %e A334773 7 | 791589 65968128 2246625000 42560067360 ... %e A334773 8 | 7944321 1319854080 78636093750 2383387566720 ... %e A334773 ... %e A334773 The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121. %o A334773 (PARI) T(n,k) = {3*((k^2 + 4*k + 1)*binomial(k+3,3)^(n-1) - (2*k^2 + 9*k + 1)*(k+1)^(n-1) - k*(k + 5)*(n-2)*(k+1)^(n-1))/(k + 5)^2} %Y A334773 Columns k=2..8 are 3*A152494, 12*A152499, 10*A152504, 30*A152509, 21*A152513, 56*A152517, 36*A152518. %Y A334773 Cf. A334772, A334774, A334778. %K A334773 nonn,tabl %O A334773 2,1 %A A334773 _Andrew Howroyd_, May 10 2020