This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334774 #15 Jan 11 2021 23:39:03 %S A334774 1,3,3,9,57,24,27,705,1449,339,81,7617,48615,49695,7392,243,78357, %T A334774 1290234,3650706,2234643,230217,729,791589,30630618,197457468, %U A334774 314306943,128203119,9689934,2187,7944321,686779323,9080961729,30829608729,31435152267,9159564513,529634931 %N A334774 Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima. %C A334774 Also the number of permutations of 2 indistinguishable copies of 1..n with exactly k-1 peaks. A peak is an interior maximum. %H A334774 Andrew Howroyd, <a href="/A334774/b334774.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %F A334774 T(n,k) = F(2,n,k-1,0) where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0. %F A334774 A334776(n) = Sum_{k=1..n} (k-1)*T(n,k). %F A334774 A334777(n) = Sum_{k=1..n} k*T(n,k). %e A334774 Triangle begins: %e A334774 1; %e A334774 3, 3; %e A334774 9, 57, 24; %e A334774 27, 705, 1449, 339; %e A334774 81, 7617, 48615, 49695, 7392; %e A334774 243, 78357, 1290234, 3650706, 2234643, 230217; %e A334774 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934; %e A334774 ... %e A334774 The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211. %e A334774 The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121. %e A334774 The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122. %e A334774 The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212. %o A334774 (PARI) %o A334774 PeaksBySig(sig, D)={ %o A334774 my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z), %o A334774 my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) ))); %o A334774 mapput(FC, key, z)); z); %o A334774 local(FC=Map()); %o A334774 vector(#D, i, F(#sig, D[i], 0)); %o A334774 } %o A334774 Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) } %o A334774 { for(n=1, 8, print(Row(n))) } %Y A334774 Columns k=1..6 are A000244(n-1), 3*A152494, 3*A152495, 3*A152496, 3*A152497, 3*A152498. %Y A334774 Row sums are A000680. %Y A334774 Main diagonal is A334775. %Y A334774 The version for permutations of 1..n is A008303(n,k-1). %Y A334774 Cf. A154283, A334773, A334776, A334777, A334778. %K A334774 nonn,tabl %O A334774 1,2 %A A334774 _Andrew Howroyd_, May 11 2020