cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334785 a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.

This page as a plain text file.
%I A334785 #19 Oct 23 2022 01:21:48
%S A334785 0,3,13,74,480,3363,24794,189540,1488744,11941820,97412601,805602850,
%T A334785 6738919408,56918898330,484750343700,4158094853640,35891774969112,
%U A334785 311529010178628,2717299393716836,23806014817182600,209389427777770240,1848322153489496355
%N A334785 a(n) is the total number of down steps before the first up step in all 3_2-Dyck paths of length 4*n. A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
%H A334785 Stefano Spezia, <a href="/A334785/b334785.txt">Table of n, a(n) for n = 0..1000</a>
%H A334785 A. Asinowski, B. Hackl, and S. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334785 a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) for n > 0.
%F A334785 a(n) ~ c*2^(8*n)*3^(-3*n)/n^(3/2), where c = (11/9)*sqrt(2/(3*Pi)). - _Stefano Spezia_, Oct 19 2022
%e A334785 For n = 1, there are the 3_2-Dyck paths UDDD, DUDD, DDUD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
%t A334785 a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n+1) - Binomial[4*n+2, n]/(n+1); Array[a, 22, 0]
%Y A334785 Cf. A001764, A002293, A002294, A334786, A334787.
%K A334785 nonn,easy
%O A334785 0,2
%A A334785 _Sarah Selkirk_, May 11 2020