cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334786 a(n) is the total number of down steps before the first up step in all 4_2-Dyck paths of length 5*n. A 4_2-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.

This page as a plain text file.
%I A334786 #18 Oct 23 2022 01:21:59
%S A334786 0,3,16,115,950,8510,80388,788392,7950930,81935425,859005840,
%T A334786 9132977490,98240702586,1067197649840,11691092372000,129011823098160,
%U A334786 1432744619523530,16000911127589355,179590878292003200,2024687100104286525,22917687021180660940
%N A334786 a(n) is the total number of down steps before the first up step in all 4_2-Dyck paths of length 5*n. A 4_2-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
%H A334786 Stefano Spezia, <a href="/A334786/b334786.txt">Table of n, a(n) for n = 0..900</a>
%H A334786 A. Asinowski, B. Hackl, and S. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334786 a(0) = 0 and a(n) = 4 * binomial(5*n, n)/(n+1) - 2 * binomial(5*n+2, n)/(n+1) for n > 0.
%F A334786 a(n) ~ c*2^(-8*n)*5^(5*n)/n^(3/2), where c = (7/16)*sqrt(5/(2*Pi)). - _Stefano Spezia_, Oct 19 2022
%e A334786 For n = 1, there are the 4_2-Dyck paths UDDDD, DUDDD, DDUDD. Before the first up step there are a(1) = 0 + 1 + 2 = 3 down steps in total.
%t A334786 a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n+1) - 2 * Binomial[5*n+2, n]/(n+1); Array[a, 21, 0]
%Y A334786 Cf. A001764, A002293, A002294, A334785, A334787.
%K A334786 nonn,easy
%O A334786 0,2
%A A334786 _Sarah Selkirk_, May 11 2020