cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334787 a(n) is the total number of down steps before the first up step in all 4_3-Dyck paths of length 5*n. A 4_3-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -3.

This page as a plain text file.
%I A334787 #18 Oct 23 2022 01:22:09
%S A334787 0,6,34,251,2105,19040,181076,1784728,18067803,186754590,1962728460,
%T A334787 20910164730,225308533359,2451112021568,26885549373440,
%U A334787 297008527319440,3301615350645935,36903975448964670,414518195957729886,4676429192392769805,52965796433899543810
%N A334787 a(n) is the total number of down steps before the first up step in all 4_3-Dyck paths of length 5*n. A 4_3-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -3.
%H A334787 Stefano Spezia, <a href="/A334787/b334787.txt">Table of n, a(n) for n = 0..900</a>
%H A334787 A. Asinowski, B. Hackl, and S. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334787 a(0) = 0 and a(n) = 4*binomial(5*n, n)/(n+1) - binomial(5*n+3, n)/(n+1) for n > 0.
%F A334787 a(n) ~ c*2^(-8*n)*5^(5*n)/n^(3/2), where c = (131/128)*sqrt(5/(2*Pi)). - _Stefano Spezia_, Oct 19 2022
%e A334787 For n = 1, there are the 4_3-Dyck paths UDDDD, DUDDD, DDUDD, DDDUD. Before the first up step there are a(1) = 0 + 1 + 2 + 3 = 6 down steps in total.
%t A334787 a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n+1) - Binomial[5*n+3, n]/(n+1); Array[a, 21, 0]
%Y A334787 Cf. A001764, A002293, A002294, A334785, A334786.
%K A334787 nonn,easy
%O A334787 0,2
%A A334787 _Sarah Selkirk_, May 11 2020