cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334792 Let L_0 = (0, 1, 2, ...); for k = 1, 2, ..., L_k is obtained by splitting L_{k-1} into runs of k! terms and reversing even-indexed runs; {a(n)} is the limit of L_k as k tends to infinity.

Original entry on oeis.org

0, 1, 3, 2, 4, 5, 10, 11, 9, 8, 6, 7, 12, 13, 15, 14, 16, 17, 22, 23, 21, 20, 18, 19, 43, 42, 44, 45, 47, 46, 41, 40, 38, 39, 37, 36, 31, 30, 32, 33, 35, 34, 29, 28, 26, 27, 25, 24, 48, 49, 51, 50, 52, 53, 58, 59, 57, 56, 54, 55, 60, 61, 63, 62, 64, 65, 70, 71
Offset: 0

Views

Author

Rémy Sigrist, May 11 2020

Keywords

Comments

A003188 can be obtained in the same manner by considering runs of 2^k terms.
A163332 can be obtained in the same manner by considering runs of 3^k terms.
This sequence is a permutation of the nonnegative integers.

Examples

			L_0 = (0, 1, 2, 3, 4, 5, ...)
L_1 = (0, 1, 2, 3, 4, 5, ...)
L_2 = (0, 1, 3, 2, 4, 5, ...)
As 5 < k! for k > 2, we have:
- a(0) = 0,
- a(1) = 1,
- a(2) = 3,
- a(3) = 2,
- a(4) = 4,
- a(5) = 5.
		

Crossrefs

Programs

  • PARI
    a(n) = { for (k=1, oo, if (n