This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334794 #9 Sep 08 2022 08:46:25 %S A334794 1,7,13,63,31,55,57,1023,364,937,133,12207,183,1239,1843,32767,307, %T A334794 76222,381,168993,14181,4495,553,1672047,3906,14385,29524,23247,871, %U A334794 812785,993,2097151,17569,31525,58887,917158710,1407,22047,85371,23209953,1723,6238791 %N A334794 a(n) = Sum_{d|n} lcm(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955). %F A334794 a(p) = p^2 + p + 1 for p = primes (A000040). %e A334794 a(6) = lcm(sigma(1), pod(1)) + lcm(sigma(2), pod(2)) + lcm(sigma(3), pod(3)) + lcm(sigma(6), pod(6)) = lcm(1, 1) + lcm(3, 2) + lcm(4, 3) + lcm(12, 36) = 1 + 6 + 12 + 36 = 55. %t A334794 a[n_] := DivisorSum[n, LCM[DivisorSigma[1, #], #^(DivisorSigma[0, #]/2)] &]; Array[a, 100] (* _Amiram Eldar_, May 12 2020 *) %o A334794 (Magma) [&+[LCM(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]] %o A334794 (PARI) a(n) = sumdiv(n, d, lcm(sigma(d), vecprod(divisors(d)))); \\ _Michel Marcus_, May 12 2020 %Y A334794 Cf. A334663 (Sum_{d|n} gcd(sigma(d), pod(d))), A334793 (Sum_{d|n} lcm(tau(d), pod(d))). %Y A334794 Cf. A000203 (sigma(n)), A007955 (pod(n)), A324529 (lcm(sigma(n), pod(n))). %K A334794 nonn %O A334794 1,2 %A A334794 _Jaroslav Krizek_, May 12 2020