This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334795 #20 Sep 08 2022 08:46:25 %S A334795 1,2,6,24,10,144,14,192,54,400,22,20736,26,784,3600,15360,34,23328,38, %T A334795 288000,7056,1936,46,3981312,750,2704,5832,790272,58,207360000,62, %U A334795 1474560,17424,4624,19600,120932352,74,5776,24336,92160000,82,796594176,86,3066624 %N A334795 a(n) = Product_{d|n} lcm(d, tau(d)) where tau(k) is the number of divisors of k (A000005). %C A334795 From _Robert Israel_, Jun 25 2020: (Start) %C A334795 If p is an odd prime, a(p) = 2*p. %C A334795 If p is a prime > 3, a(p^2) = 6*p^3. %C A334795 If p and q are distinct odd primes, a(p*q) = 16*p^2*q^2. (End) %H A334795 Robert Israel, <a href="/A334795/b334795.txt">Table of n, a(n) for n = 1..10000</a> %F A334795 a(p) = 2p for p = odd primes (A065091). %e A334795 a(6) = lcm(1, tau(1)) * lcm(2, tau(2)) * lcm(3, tau(3)) * lcm(6, tau(6)) = lcm(1, 1) * lcm(2, 2) * lcm(3, 2) * lcm(6, 4) = 1 * 2 * 6 * 12 = 144. %p A334795 g:= d -> ilcm(d, numtheory:-tau(d)): %p A334795 f:= n -> mul(g(d), d = numtheory:-divisors(n)): %p A334795 map(f, [$1..100]); # _Robert Israel_, Jun 25 2020 %t A334795 a[n_] := Product[LCM[d, DivisorSigma[0, d]], {d, Divisors[n]}]; Array[a, 100] (* _Amiram Eldar_, May 12 2020 *) %o A334795 (Magma) [&*[LCM(d, #Divisors(d)): d in Divisors(n)]: n in [1..100]] %o A334795 (PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], numdiv(d[k]))); \\ _Michel Marcus_, May 12 2020 %Y A334795 Cf. A334782 (Sum_{d|n} lcm(d, tau(d))), A334664 (Product_{d|n} gcd(d, tau(d))). %Y A334795 Cf. A000005 (tau(n)), A009230 (lcm(n, tau(n))). %K A334795 nonn,look %O A334795 1,2 %A A334795 _Jaroslav Krizek_, May 12 2020