cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334805 a(n) = Product_{d|n} lcm(d, sigma(d)) where sigma(k) is the sum of divisors of k (A000203).

This page as a plain text file.
%I A334805 #13 Sep 08 2022 08:46:25
%S A334805 1,6,12,168,30,864,56,20160,1404,16200,132,2032128,182,56448,43200,
%T A334805 9999360,306,23654592,380,190512000,451584,313632,552,29262643200,
%U A334805 23250,596232,1516320,88510464,870,100776960000,992,20158709760,836352,1685448,2822400
%N A334805 a(n) = Product_{d|n} lcm(d, sigma(d)) where sigma(k) is the sum of divisors of k (A000203).
%F A334805 a(p) = p^2 + p for p = primes (A000040).
%e A334805 a(6) = lcm(1, sigma(1)) * lcm(2, sigma(2)) * lcm(3, sigma(3)) * lcm(6, sigma(6)) = lcm(1, 1) * lcm(2, 3) * lcm(3, 4) * lcm(6, 12) = 1 * 6 * 12 * 12 = 864.
%t A334805 a[n_] := Product[LCM[d, DivisorSigma[1, d]], {d, Divisors[n]}]; Array[a, 35] (* _Amiram Eldar_, Jun 27 2020 *)
%o A334805 (Magma) [&*[LCM(d, &+Divisors(d)): d in Divisors(n)]: n in [1..100]]
%o A334805 (PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(d[k], sigma(d[k]))); \\ _Michel Marcus_, Jun 27 2020
%Y A334805 Cf. A334783 (Sum_{d|n} lcm(d, sigma(d))), A334491 (Product_{d|n} gcd(d, sigma(d))).
%Y A334805 Cf. A000203 (sigma(n)), A009242 (lcm(n, sigma(n))), A036690.
%K A334805 nonn
%O A334805 1,2
%A A334805 _Jaroslav Krizek_, Jun 26 2020