This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334807 #16 Jan 02 2025 20:04:36 %S A334807 1,2,6,48,10,432,14,3072,162,2000,22,17915904,26,5488,54000,15728640, %T A334807 34,68024448,38,1152000000,148176,21296,46,380420285792256,3750,35152, %U A334807 472392,8674025472,58,314928000000000,62,1546188226560,574992,78608,686000 %N A334807 a(n) = Product_{d|n} lcm(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955). %H A334807 Robert Israel, <a href="/A334807/b334807.txt">Table of n, a(n) for n = 1..5039</a> %F A334807 a(p) = 2p for p = odd primes (A065091). %e A334807 a(6) = lcm(tau(1), pod(1)) * lcm(tau(2), pod(2)) * lcm(tau(3), pod(3)) * lcm(tau(6), pod(6)) = lcm(1, 1) * lcm(2, 2) * lcm(2, 3) * lcm(4, 36) = 1 * 2 * 6 * 36 = 432. %p A334807 pod:= proc(n) option remember; convert(numtheory:-divisors(n),`*`) end proc: %p A334807 f:= proc(n) local d; mul(ilcm(numtheory:-tau(d), pod(d)),d=numtheory:-divisors(n)) end proc: %p A334807 map(f, [$1..50]); # _Robert Israel_, Jan 02 2025 %t A334807 a[n_] := Product[LCM[DivisorSigma[0, d], Times @@ Divisors[d]], {d, Divisors[n]}]; Array[a, 35] (* _Amiram Eldar_, Jun 27 2020 *) %o A334807 (Magma) [&*[LCM(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]; %o A334807 (PARI) a(n) = my(d=divisors(n)); prod(k=1, #d, lcm(numdiv(d[k]), vecprod(divisors(d[k])))); \\ _Michel Marcus_, Jun 27 2020 %Y A334807 Cf. A334793 (Sum_{d|n} lcm(tau(d), pod(d))), A334730 (Product_{d|n} gcd(tau(d), pod(d))). %Y A334807 Cf. A000005 (tau(n)), A007955 (pod(n)), A324528 (lcm(tau(n), pod(n))). %K A334807 nonn,look %O A334807 1,2 %A A334807 _Jaroslav Krizek_, Jun 26 2020