This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334809 #5 Sep 08 2022 08:46:25 %S A334809 1,6,12,336,30,2592,56,322560,4212,162000,132,1755758592,182,395136, %T A334809 648000,10239344640,306,68976790272,380,1524096000000,9483264,3449952, %U A334809 552,2796089100573081600,116250,15502032,122821920,485745426432,870,102036672000000000,992 %N A334809 a(n) = Product_{d|n} lcm(sigma(d), pod(d)) where sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955). %F A334809 a(p) = p^2 + p for p = primes (A000040). %e A334809 a(6) = lcm(sigma(1), pod(1)) * lcm(sigma(2), pod(2)) * lcm(sigma(3), pod(3)) * lcm(sigma(6), pod(6)) = lcm(1, 1) * lcm(3, 2) * lcm(4, 3) * lcm(12, 36) = 1 * 6 * 12 * 36 = 2592. %o A334809 (Magma) [&*[LCM(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]] %Y A334809 Cf. A334794 (Sum_{d|n} lcm(sigma(d), pod(d))), A334731 (Product_{d|n} gcd(sigma(d), pod(d))). %Y A334809 Cf. A000203(sigma(n)), A007955 (pod(n)), A324529 (lcm(sigma(n), pod(n))). %K A334809 nonn %O A334809 1,2 %A A334809 _Jaroslav Krizek_, Aug 01 2020