A334813 Arithmetic numbers k (A003601) such that sigma(k)/d(k) is also an arithmetic number, where d(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).
1, 5, 6, 11, 13, 14, 15, 20, 29, 37, 38, 39, 41, 43, 44, 45, 49, 53, 54, 56, 57, 59, 60, 61, 65, 68, 73, 78, 83, 85, 86, 87, 89, 95, 96, 97, 101, 102, 107, 109, 110, 111, 113, 114, 116, 118, 123, 125, 129, 131, 134, 135, 137, 139, 142, 143, 145, 147, 150, 153
Offset: 1
Keywords
Examples
5 is a term since sigma(5)/d(5) = 6/2 = 3 is an integer, and so is sigma(3)/d(3) = 4/2 = 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
rat[n_] := DivisorSigma[1, n]/DivisorSigma[0, n]; Select[Range[200], IntegerQ[(r = rat[#])] && IntegerQ[rat[r]] &]
Comments