cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).

This page as a plain text file.
%I A334823 #22 Sep 08 2022 08:46:25
%S A334823 1,1,0,3,0,-1,15,0,-6,0,105,0,-45,0,1,945,0,-420,0,15,0,10395,0,-4725,
%T A334823 0,210,0,-1,135135,0,-62370,0,3150,0,-28,0,2027025,0,-945945,0,51975,
%U A334823 0,-630,0,1,34459425,0,-16216200,0,945945,0,-13860,0,45,0,654729075,0,-310134825,0,18918900,0,-315315,0,1485,0,-1
%N A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).
%C A334823 Lambert's numerator polynomials related to convergents of tan(x), g(n, x), are given in A334824.
%H A334823 G. C. Greubel, <a href="/A334823/b334823.txt">Rows n = 0..100 of the triangle, flattened</a>
%H A334823 J.-H. Lambert, <a href="http://www.kuttaka.org/~JHL/L1768b.pdf">Mémoire sur quelques propriétés remarquables des quantités transcendantes et logarithmiques</a> (Memoir on some properties that can be traced from circular transcendent and logarithmic quantities), Histoire de l’Académie royale des sciences et belles-lettres (1761), Berlin. See <a href="http://www.bibnum.education.fr/mathematiques/theorie-des-nombres/lambert-et-l-irrationalite-de-p-1761">also</a>.
%F A334823 Equals the coefficients of the polynomials, f(n, x), defined by: (Start)
%F A334823 f(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k)!/((2*k)!*(n-2*k)!))*(x/2)^(n-2*k).
%F A334823 f(n, x) = ((2*n)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 1/2, -n, -n+1/2; -1/x^2).
%F A334823 f(n, x) = ((-i)^n/2)*(y(n, i*x) + (-1)^n*y(n, -i*x)), where y(n, x) are the Bessel Polynomials.
%F A334823 f(n, x) = (2*n-1)*x*f(n-1, x) - f(n-2, x).
%F A334823 E.g.f. of f(n, x): cos((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
%F A334823 f(n, 1) = (-1)^n*f(n, -1) = A053983(n) = (-1)^(n+1)*A053984(-n-1) = (-1)^(n+1) * g(-n-1, 1).
%F A334823 f(n, 2) = (-1)^n*f(n, -2) = A053988(n+1). (End)
%F A334823 As a number triangle:
%F A334823 T(n, k) = i^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), where i = sqrt(-1).
%F A334823 T(n, 0) = A001147(n).
%e A334823 Polynomials:
%e A334823 f(0, x) = 1;
%e A334823 f(1, x) = x;
%e A334823 f(2, x) = 3*x^2 - 1;
%e A334823 f(3, x) = 15*x^3 - 6*x;
%e A334823 f(4, x) = 105*x^4 - 45*x^2 + 1;
%e A334823 f(5, x) = 945*x^5 - 420*x^3 + 15*x;
%e A334823 f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
%e A334823 f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
%e A334823 f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
%e A334823 Triangle of coefficients begins as:
%e A334823         1;
%e A334823         1, 0;
%e A334823         3, 0,      -1;
%e A334823        15, 0,      -6, 0;
%e A334823       105, 0,     -45, 0,     1;
%e A334823       945, 0,    -420, 0,    15, 0;
%e A334823     10395, 0,   -4725, 0,   210, 0,   -1;
%e A334823    135135, 0,  -62370, 0,  3150, 0,  -28, 0;
%e A334823   2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
%p A334823 T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
%p A334823 seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
%t A334823 (* First program *)
%t A334823 y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
%t A334823 f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
%t A334823 Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
%t A334823 (* Second program *)
%t A334823 Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
%o A334823 (Magma)
%o A334823 C<i> := ComplexField();
%o A334823 T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
%o A334823 [T(n,k): k in [0..n], n in [0..10]];
%o A334823 (Sage) [[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
%Y A334823 Cf. A001497, A001498, A053983, A053984, A053987, A053988, A094674, A334824.
%Y A334823 Columns k: A001147 (k=0), A001879 (k=2), A001880 (k=4), A038121 (k=6).
%K A334823 tabl,sign
%O A334823 0,4
%A A334823 _G. C. Greubel_, May 12 2020, following a suggestion from _Michel Marcus_