cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334824 Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).

This page as a plain text file.
%I A334824 #20 Sep 08 2022 08:46:25
%S A334824 1,3,0,15,0,-1,105,0,-10,0,945,0,-105,0,1,10395,0,-1260,0,21,0,135135,
%T A334824 0,-17325,0,378,0,-1,2027025,0,-270270,0,6930,0,-36,0,34459425,0,
%U A334824 -4729725,0,135135,0,-990,0,1,654729075,0,-91891800,0,2837835,0,-25740,0,55,0,13749310575,0,-1964187225,0,64324260,0,-675675,0,2145,0,-1
%N A334824 Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
%C A334824 Lambert's denominator polynomials related to convergents of tan(x), f(n, x), are given in A334823.
%H A334824 G. C. Greubel, <a href="/A334824/b334824.txt">Rows n = 0..100 of the triangle, flattened</a>
%H A334824 J.-H. Lambert, <a href="http://www.kuttaka.org/~JHL/L1768b.pdf">Mémoire sur quelques propriétés remarquables des quantités transcendantes et logarithmiques</a> (Memoir on some properties that can be traced from circular transcendent and logarithmic quantities), Histoire de l’Académie royale des sciences et belles-lettres (1761), Berlin. See <a href="http://www.bibnum.education.fr/mathematiques/theorie-des-nombres/lambert-et-l-irrationalite-de-p-1761">also</a>.
%F A334824 Equals the coefficients of the polynomials, g(n, x), defined by: (Start)
%F A334824 g(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k+1)!/((2*k+1)!*(n-2*k)!))*(x/2)^(n-2*k).
%F A334824 g(n, x) = ((2*n+1)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 3/2, -n, -n-1/2; -1/x^2).
%F A334824 g(n, x) = ((-i)^n/2)*(y(n+1, i*x) + (-1)^n*y(n+1, -i*x)), where y(n, x) are the Bessel Polynomials.
%F A334824 g(n, x) = (2*n-1)*x*g(n-1, x) - g(n-2, x).
%F A334824 E.g.f. of g(n, x): sin((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
%F A334824 g(n, 1) = (-1)^n*g(n, -1) = A053984(n) = (-1)^n*A053983(-n-1) = (-1)^n*f(-n-1, 1).
%F A334824 g(n, 2) = (-1)^n*g(n, -2) = A053987(n+1). (End)
%F A334824 As a number triangle:
%F A334824 T(n, k) = i^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), where i = sqrt(-1).
%F A334824 T(n, 0) = A001147(n+1).
%e A334824 Polynomials:
%e A334824 g(0, x) = 1;
%e A334824 g(1, x) = 3*x;
%e A334824 g(2, x) = 15*x^2 - 1;
%e A334824 g(3, x) = 105*x^3 - 10*x;
%e A334824 g(4, x) = 945*x^4 - 105*x^2 + 1;
%e A334824 g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
%e A334824 g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
%e A334824 g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
%e A334824 Triangle of coefficients begins as:
%e A334824         1;
%e A334824         3, 0;
%e A334824        15, 0,      -1;
%e A334824       105, 0,     -10, 0;
%e A334824       945, 0,    -105, 0,    1;
%e A334824     10395, 0,   -1260, 0,   21, 0;
%e A334824    135135, 0,  -17325, 0,  378, 0,  -1;
%e A334824   2027025, 0, -270270, 0, 6930, 0, -36, 0.
%p A334824 T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
%p A334824 seq(seq(T(n, k), k = 0..n), n = 0..10);
%t A334824 (* First program *)
%t A334824 y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
%t A334824 g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
%t A334824 Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
%t A334824 (* Second program *)
%t A334824 Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
%o A334824 (Magma)
%o A334824 C<i> := ComplexField();
%o A334824 T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
%o A334824 [T(n,k): k in [0..n], n in [0..10]];
%o A334824 (Sage) [[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
%Y A334824 Cf. A001497, A001498, A053983, A053984, A053987, A053988, A094675, A334823.
%Y A334824 Columns k: A001147 (k=0), A000457 (k=2), A001881 (k=4), A130563 (k=6).
%K A334824 tabl,sign
%O A334824 0,2
%A A334824 _G. C. Greubel_, May 13 2020, following a suggestion from _Michel Marcus_