cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334826 Decimal expansion of Product_{primes p==1 mod 8} (1 - 4/p)*((p + 1)/(p - 1))^2.

Original entry on oeis.org

9, 5, 6, 9, 4, 5, 3, 4, 7, 8, 5, 1, 6, 0, 1, 1, 8, 3, 4, 3, 6, 9, 6, 7, 0, 5, 7, 2, 7, 3, 8, 9, 1, 8, 2, 8, 7, 5, 3, 1, 7, 4, 9, 7, 7, 2, 9, 1, 3, 9, 1, 4, 7, 8, 9, 0, 5, 4, 3, 2, 6, 0, 4, 2, 4, 6, 0, 1, 7, 0, 1, 6, 4, 4, 4, 8, 8, 8, 8, 5, 9, 4, 8, 1, 4, 4, 0, 5, 1, 2, 0, 3, 9, 0, 7, 9, 5
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2020

Keywords

Comments

Note that Product_{k>=1} (4*k + 1)^2 * (8*k - 3) / (16 * k^2 * (8*k + 1)) = 2^(1/4) * Gamma(1/8)^2 / (sqrt(Pi) * Gamma(1/4)^3) = 0.79906817873784592665354...

Examples

			0.9569453478516011834369670572738918287531749772913914789...
		

Crossrefs

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
    (* -------------------------------------------------------------------------- *)
    (* second program, more general *)
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (1 - 4/p)*((p + 1)/(p - 1))^2;
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17]*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)