A334838 Positive integers m with prime(m) in the form x^2 + m*y^2, where x and y are positive integers.
1, 2, 12, 35, 37, 77, 97, 100, 118, 136, 137, 152, 183, 184, 190, 212, 231, 258, 290, 352, 421, 462, 482, 487, 690, 730, 741, 960, 1110, 1111, 1168, 1169, 1227, 1285, 1328, 1396, 1417, 1621, 2074, 2119, 2318, 2578, 2603, 2652, 2707, 2726, 2737, 2772, 2776, 2788, 2803, 2853, 2857, 2865, 2882, 2892, 3035, 3176, 3199, 3245
Offset: 1
Keywords
Examples
a(2) = 2 with prime(2) = 3 = 1^2 + 2*1^2. a(3) = 12 with prime(12) = 37 = 5^2 + 12*1^2. a(4) = 35 with prime(35) = 149 = 3^2 + 35*2^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017.)
Programs
-
Mathematica
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]; tab={};Do[Do[If[SQ[Prime[m]-m*x^2],tab=Append[tab,m];Goto[aa]],{x,1,Sqrt[Prime[m]/m]}];Label[aa],{m,1,3245}];tab
Comments