A334850 Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.
7, 7, 6, 4, 2, 3, 7, 1, 3, 7, 1, 4, 8, 3, 2, 4, 2, 5, 9, 8, 5, 6, 9, 8, 2, 0, 6, 2, 6, 0, 0, 9, 0, 3, 6, 4, 2, 3, 6, 4, 3, 2, 1, 7, 3, 7, 9, 8, 2, 7, 1, 0, 6, 7, 5, 9, 1, 2, 0, 1, 9, 9, 6, 9, 9, 5, 0, 7, 3, 6, 6, 0, 0, 8, 8, 4, 8, 1, 0, 5, 1, 1, 4, 3, 7, 8, 0, 2, 2, 1, 6, 4, 1, 3, 6, 2, 3, 9, 6
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Gamma Function
Crossrefs
Cf. A030171.
Programs
-
Mathematica
(* FIRST program *) g[x_] := Gamma[x]; p[k_, x_] := PolyGamma[k, x] solns = Map[#[[1]][[1]] &, GatherBy[Map[{#[[2]], Rationalize[#[[2]], 10^-30]} &, Select[Table[{nn, #, Accuracy[#]} &[x /. FindRoot[ 0 == (2 g[x]^2 p[0, x]^5 + 3 p[0, x] p[1, x] (-1 + g[x]^2 p[1, x]) + p[0, x]^3 (-1 + 3 g[x]^2 p[1, x]) - (1 + g[x]^2 p[0, x]^2) p[2, x]), {x, nn}, WorkingPrecision -> 100]], {nn, -2.8, 2.5, .101}], #[[3]] > 40 &]], #[[2]] &]] {coords, rads} = Chop[Transpose[Map[{{(-p[0, x] + x p[0, x]^2 - g[x]^2 p[0, x]^3 + x p[1, x])/(p[0, x]^2 + p[1, x]), (1 + g[x]^2 (2 p[0, x]^2 + p[1, x]))/(g[x] (p[0, x]^2 + p[1, x]))}, Sqrt[(1 + g[x]^2 p[0, x]^2)^3/(g[x]^2 (p[0, x]^2 + p[1, x])^2)]} /. x -> # &, solns]]] Show[Plot[g[x], {x, -3, 2}], Map[{Graphics[Circle[coords[[#]], rads[[#]]]], Graphics[Point[coords[[#]]]]} &, Range[Length[rads]]], AspectRatio -> Automatic, PlotRange -> {-4, 4}, ImageSize -> 600] (* Peter J. C. Moses, Jun 17 2020 *) (* Graphics output:: 4 osculating circles; Numerical output: first 4 numbers are x-coordinates of touchpoints of osculating circles with graph of gamma function; next 8 numbers are in pairs: (x,y) for the centers of the four circles; last 4 numbers are radii of the 4 circles *) (* SECOND program: animation of osculating circle *) Animate[Show[cent = {(-PolyGamma[0, x] + x PolyGamma[0, x]^2 - Gamma[x]^2 PolyGamma[0, x]^3 + x PolyGamma[1, x])/(PolyGamma[0, x]^2 + PolyGamma[1, x]), (1 + Gamma[x]^2 (2 PolyGamma[0, x]^2 + PolyGamma[1, x]))/(Gamma[x] (PolyGamma[0, x]^2 + PolyGamma[1, x]))}; rad = Sqrt[(1 + Gamma[x]^2 PolyGamma[0, x]^2)^3/(Gamma[x]^2 (PolyGamma[0, x]^2 + PolyGamma[1, x])^2)]; Plot[Gamma[x], {x, 0, 4}], Graphics[{PointSize[Large], Point[{x, Gamma[x]}]}], Graphics[{PointSize[Large], Point[cent]}], Graphics[Circle[cent, rad]], AxesOrigin -> {0, 0}, PlotRange -> {{0, 4}, {0, 6}}, ImageSize -> 400, AspectRatio -> Automatic], {x, 0.4, 3.5}, AnimationRunning -> True] (* Peter J. C. Moses, Jun 18 2020 *)
Comments