cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334850 Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.

Original entry on oeis.org

7, 7, 6, 4, 2, 3, 7, 1, 3, 7, 1, 4, 8, 3, 2, 4, 2, 5, 9, 8, 5, 6, 9, 8, 2, 0, 6, 2, 6, 0, 0, 9, 0, 3, 6, 4, 2, 3, 6, 4, 3, 2, 1, 7, 3, 7, 9, 8, 2, 7, 1, 0, 6, 7, 5, 9, 1, 2, 0, 1, 9, 9, 6, 9, 9, 5, 0, 7, 3, 6, 6, 0, 0, 8, 8, 4, 8, 1, 0, 5, 1, 1, 4, 3, 7, 8, 0, 2, 2, 1, 6, 4, 1, 3, 6, 2, 3, 9, 6
Offset: 0

Views

Author

Clark Kimberling, Jun 21 2020

Keywords

Comments

Each branch of y = Gamma(x) has a point of maximal curvature (MC), at which the osculating circle has minimal radius (R). The branch in Quadrant I has MC at (x, Gamma(x)), where x = 0.9757... and R = 0.77642... Details for 4 branches (shown by 1st Mathematica program):
For the branch -3 < x < -2:
MC at x=-2.6209004043183225054792567933147...
R = 0.1025411250345462193237149178953328755...
For the branch -2 < x < -1:
MC at x=-1.57452893040224357315540638154037...
R = 0.043652981140784797188517226949156690045...
For the branch -1 < x < 0:
MC at x=-0.50414409519766396393374935693160...
R = 0.0315571147317663900987190484592293666...
For the branch 0 < x:
MC at x=0.97574729311153379112462151102264...
R = 0.7764237137148324259856982062600903642...

Crossrefs

Cf. A030171.

Programs

  • Mathematica
    (* FIRST program *)
    g[x_] := Gamma[x]; p[k_, x_] := PolyGamma[k, x]
    solns = Map[#[[1]][[1]] &, GatherBy[Map[{#[[2]], Rationalize[#[[2]], 10^-30]} &,
        Select[Table[{nn, #, Accuracy[#]} &[x /. FindRoot[
             0 == (2 g[x]^2 p[0, x]^5 + 3 p[0, x] p[1, x] (-1 + g[x]^2 p[1, x]) +
                p[0, x]^3 (-1 + 3 g[x]^2 p[1, x]) - (1 +  g[x]^2 p[0, x]^2) p[2, x]), {x, nn},
             WorkingPrecision -> 100]], {nn, -2.8, 2.5, .101}], #[[3]] > 40 &]], #[[2]] &]]
    {coords, rads} = Chop[Transpose[Map[{{(-p[0, x] + x p[0, x]^2 - g[x]^2 p[0, x]^3 +
               x p[1, x])/(p[0, x]^2 + p[1, x]), (1 + g[x]^2 (2 p[0, x]^2 + p[1, x]))/(g[x] (p[0, x]^2 + p[1, x]))}, Sqrt[(1 + g[x]^2 p[0, x]^2)^3/(g[x]^2 (p[0, x]^2 + p[1, x])^2)]} /. x -> # &, solns]]]
    Show[Plot[g[x], {x, -3, 2}], Map[{Graphics[Circle[coords[[#]], rads[[#]]]],
        Graphics[Point[coords[[#]]]]} &, Range[Length[rads]]],
    AspectRatio -> Automatic, PlotRange -> {-4, 4}, ImageSize -> 600]
    (* Peter J. C. Moses, Jun 17 2020 *)
    (* Graphics output:: 4 osculating circles;
    Numerical output: first 4 numbers are x-coordinates of touchpoints of osculating circles with graph of gamma function; next 8 numbers are in pairs: (x,y) for the centers of the four circles; last 4 numbers are radii of the 4 circles *)
    (* SECOND program: animation of osculating circle *)
    Animate[Show[cent = {(-PolyGamma[0, x] + x PolyGamma[0, x]^2 -
           Gamma[x]^2 PolyGamma[0, x]^3 + x PolyGamma[1, x])/(PolyGamma[0, x]^2 + PolyGamma[1, x]), (1 + Gamma[x]^2 (2 PolyGamma[0, x]^2 + PolyGamma[1, x]))/(Gamma[x] (PolyGamma[0, x]^2 + PolyGamma[1, x]))}; rad = Sqrt[(1 +
            Gamma[x]^2 PolyGamma[0, x]^2)^3/(Gamma[x]^2 (PolyGamma[0, x]^2 + PolyGamma[1, x])^2)]; Plot[Gamma[x], {x, 0, 4}],
      Graphics[{PointSize[Large], Point[{x, Gamma[x]}]}],
      Graphics[{PointSize[Large], Point[cent]}],
      Graphics[Circle[cent, rad]], AxesOrigin -> {0, 0},
      PlotRange -> {{0, 4}, {0, 6}}, ImageSize -> 400,
      AspectRatio -> Automatic], {x, 0.4, 3.5}, AnimationRunning -> True]
    (* Peter J. C. Moses, Jun 18 2020 *)