This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334861 #12 May 15 2020 04:34:39 %S A334861 0,0,2,0,3,2,3,0,4,3,4,2,4,3,5,0,4,4,6,3,5,4,5,2,6,4,6,3,7,5,4,0,6,4, %T A334861 6,4,7,6,6,3,5,5,7,4,7,5,6,2,6,6,6,4,7,6,7,3,8,7,8,5,5,4,7,0,7,6,8,4, %U A334861 7,6,7,4,8,7,8,6,7,6,7,3,8,5,6,5,7,7,9,4,8,7,7,5,6,6,9,2,5,6,8,6,8,6,6,4,8 %N A334861 a(n) = A329697(n) + A331410(n). %C A334861 Completely additive because A329697 and A331410 are. No 1's occur as terms. %H A334861 Antti Karttunen, <a href="/A334861/b334861.txt">Table of n, a(n) for n = 1..65537</a> %F A334861 a(n) = A329697(n) + A331410(n). %F A334861 a(2) = 0, a(p) = 2+A329697(p-1)+A331410(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1. %o A334861 (PARI) %o A334861 A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); }; %o A334861 A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); }; %o A334861 A334861(n) = (A329697(n)+A331410(n)); %o A334861 \\ Or alternatively as: %o A334861 A334861(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(2+A329697(f[k,1]-1)+A331410(f[k,1]+1)))); }; %Y A334861 Cf. A000079 (positions of zeros), A329697, A331410, A334862. %K A334861 nonn %O A334861 1,3 %A A334861 _Antti Karttunen_, May 14 2020