This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334882 #11 May 15 2020 06:43:40 %S A334882 28,304,306,340,460,462,858,868,1482,1768,1974,2440,2728,2838,2860, %T A334882 3318,3738,4134,4264,4288,4420,4422,5236,5694,6100,6102,7590,8814, %U A334882 9040,9042,10218,11128,11620,11778,12558,12978,13110,14320,14382,14670,15568,16048,16110 %N A334882 Numbers k such that k and k+2 are both primitive practical numbers (A267124). %H A334882 Amiram Eldar, <a href="/A334882/b334882.txt">Table of n, a(n) for n = 1..10000</a> %e A334882 28 is a term since 28 and 28 + 2 = 30 are both primitive practical numbers. %t A334882 f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; pracTestQ[fct_, k_] := Module[{f = fct}, f[[k, 2]] -= 1; pracQ[f]]; primPracQ[n_] := Module[{fct = FactorInteger[n]}, pracQ[fct] && AllTrue[Range@Length[fct], fct[[#, 2]] == 1 || ! pracTestQ[fct, #] &]]; Select[Range[2, 16200, 2], primPracQ[#] && primPracQ[# + 2] &] %Y A334882 Cf. A267124, A287681, A334883. %K A334882 nonn %O A334882 1,1 %A A334882 _Amiram Eldar_, May 14 2020