This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334884 #36 Dec 21 2024 01:01:46 %S A334884 6,12,60,168,360,504,660,1092,2448,3420,4080,5616,6072,7800,9828, %T A334884 12180,14880,20160,20160,25308,32736,34440,39732,51888,58800,74412, %U A334884 102660,113460,150348,178920,194472,246480,262080,265680,285852,352440,372000,456288 %N A334884 Order of the non-isomorphic groups PSL(m,q) [or PSL_m(q)] in increasing order as q runs through the prime powers. %C A334884 The projective special linear group PSL(m,q) is the quotient group of SL(m,q) with its center. %C A334884 Theorem: The group PSL(m,q) is simple except for PSL(2,2) and PSL(2,3). %C A334884 Exceptional isomorphisms (let "==" denote "isomorphic to"): %C A334884 a(1) = 6 for PSL(2,2) == GL(2,2) == SL(2,2) == S_3 (see example). %C A334884 a(2) = 12 for PSL(2,3) == A_4. %C A334884 a(3) = 60 for PSL(2,4) and for PSL(2,5) with PSL(2,4) == PSL(2,5) == A_5 that is the smallest nonabelian simple group. %C A334884 a(4) = 168 for PSL(2,7) and for PSL(3,2) with PSL(2,7) == PSL(3,2); PSL(2, 7) is the second smallest nonabelian simple group (see example). %C A334884 a(5) = 360 for PSL(2,9) == A_6. %C A334884 a(18) = a(19) = 20160 for PSL(4,2) == A_8 and for PSL(3,4) non-isomorphic to A_8 (see comment in A137863). %C A334884 Array for order of PSL(m,q): %C A334884 m\q| 2 3 4 =2^2 5 7 %C A334884 ---------------------------------------------------------------------- %C A334884 2 | 6 12 60 60 168 %C A334884 3 | 168 5616 20160 372000 1876896 %C A334884 4 | 20160 6065280 987033600 7254000000 2317591180800 %C A334884 5 | 9999360 237783237120 258492255436800 56653740000000000 #PSL(5,7) %C A334884 with #PSL(5,7) = 187035198320488089600 %H A334884 Wikipedia, <a href="https://en.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a> %F A334884 #PSL(m,q) = (Product_{j=0..m-2} (q^m - q^j)) * q^(m-1) / gcd(m,q-1). %e A334884 a(1) = #PSL(2,2) = (2^2-1)*2 = 6 and the 6 elements of PSL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 matrices with entries in F_2: %e A334884 (1 0) (1 1) (1 0) (0 1) (0 1) (1 1) %e A334884 (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0). %e A334884 a(4) = #PSL(2,7) = (7^2-1)*7/gcd(2,6) = 168, and also, %e A334884 a(4) = #PSL(3,2) = (2^3-1)*(2^3-2)*2^2/gcd(3,1) = 168. %Y A334884 Subsequence: A117762 (PSL(2,prime(n))). %Y A334884 Cf. A137863. %Y A334884 Cf. A334994 and A335000 for other versions of this sequence. %K A334884 nonn %O A334884 1,1 %A A334884 _Bernard Schott_, May 14 2020