This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334892 #35 Feb 16 2025 08:34:00 %S A334892 1,0,1,0,1,1,0,1,2,0,1,3,2,0,1,4,4,1,0,1,5,8,3,0,1,6,12,6,0,1,7,18,15, %T A334892 0,1,8,24,26,4,0,1,9,32,47,20,0,1,10,40,67,40,7,0,1,11,50,102,80,18,0, %U A334892 1,12,60,140,140,53,6,0,1,13,72,194,236,110,16,1 %N A334892 Number T(n,k) of k-element subsets of [n] avoiding 3-term arithmetic progressions and containing n if n>0; triangle T(n,k), n>=0, 0<=k<=A003002(n), read by rows. %C A334892 T(n,k) is defined for all n >= 0 and k >= 0. The triangle contains only elements with 0 <= k <= A003002(n). T(n,k) = 0 for k > A003002(n). %H A334892 Fausto A. C. Cariboni, <a href="/A334892/b334892.txt">Rows n = 0..80, flattened</a> (rows n = 0..40 from Alois P. Heinz) %H A334892 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NonaveragingSequence.html">Nonaveraging Sequence</a> %H A334892 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a> %H A334892 Wikipedia, <a href="https://en.wikipedia.org/wiki/Salem-Spencer_set">Salem-Spencer set</a> %H A334892 <a href="/index/No#non_averaging">Index entries related to non-averaging sequences</a> %F A334892 T(0,k) = A334187(0,k), T(n,k) = A334187(n,k) - A334187(n-1,k) for n > 0. %e A334892 1; %e A334892 0, 1; %e A334892 0, 1, 1; %e A334892 0, 1, 2; %e A334892 0, 1, 3, 2; %e A334892 0, 1, 4, 4, 1; %e A334892 0, 1, 5, 8, 3; %e A334892 0, 1, 6, 12, 6; %e A334892 0, 1, 7, 18, 15; %e A334892 0, 1, 8, 24, 26, 4; %e A334892 0, 1, 9, 32, 47, 20; %e A334892 0, 1, 10, 40, 67, 40, 7; %e A334892 0, 1, 11, 50, 102, 80, 18; %e A334892 0, 1, 12, 60, 140, 140, 53, 6; %e A334892 0, 1, 13, 72, 194, 236, 110, 16, 1; %e A334892 0, 1, 14, 84, 248, 342, 198, 42, 3; %e A334892 0, 1, 15, 98, 326, 532, 377, 100, 10; %e A334892 ... %p A334892 b:= proc(n, s) option remember; `if`(n=0, x, b(n-1, s)+ `if`( %p A334892 ormap(j-> 2*j-n in s, s), 0, expand(x*b(n-1, s union {n})))) %p A334892 end: %p A334892 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( %p A334892 `if`(n=0, 1, b(n-1, {n}))): %p A334892 seq(T(n), n=0..16); %t A334892 b[n_, s_] := b[n, s] = If[n == 0, x, b[n-1, s] + If[ %t A334892 AnyTrue[s, MemberQ[s, 2#-n]&], 0, Expand[x*b[n-1, s ~Union~ {n}]]]]; %t A334892 T[n_] := If[n == 0, {1}, CoefficientList[b[n-1, {n}], x]]; %t A334892 T /@ Range[0, 16] // Flatten (* _Jean-François Alcover_, May 03 2021, after _Alois P. Heinz_ *) %Y A334892 Columns k=0-3 give: A000007, A057427, A000027(n-1), A007590(n-2). %Y A334892 Row sums give A334893. %Y A334892 Last elements of rows give A334894. %Y A334892 Cf. A003002, A334187. %K A334892 nonn,tabf %O A334892 0,9 %A A334892 _Alois P. Heinz_, May 14 2020