cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334902 Infinitary practical numbers (A334901) whose number of divisors is not a power of 2.

This page as a plain text file.
%I A334902 #10 Nov 30 2022 18:54:12
%S A334902 72,360,480,504,600,672,792,864,936,1050,1056,1152,1176,1224,1248,
%T A334902 1350,1368,1400,1470,1650,1656,1800,1950,1960,2088,2200,2232,2520,
%U A334902 2600,2646,2664,2952,3096,3200,3234,3240,3360,3384,3402,3528,3816,3822,3960,4200,4248,4312
%N A334902 Infinitary practical numbers (A334901) whose number of divisors is not a power of 2.
%C A334902 Practical numbers (A005153) whose number of divisors is a power of 2 (A036537) are also infinitary practical numbers (A334901), since all of their divisors are infinitary.
%C A334902 Up to 10^6 there are 34768 infinitary practical numbers; of them only 8858 are in this sequence.
%H A334902 Amiram Eldar, <a href="/A334902/b334902.txt">Table of n, a(n) for n = 1..10000</a>
%t A334902 bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], _?(# == 1 &)] // Flatten); f[p_, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; pow2Q[n_] := n/2^IntegerExponent[n, 2] == 1; Select[Range[4400], ! pow2Q[DivisorSigma[0, #]] && infPracQ[#] &]
%Y A334902 Cf. A005153, A036537, A287173, A334899, A334901.
%K A334902 nonn
%O A334902 1,1
%A A334902 _Amiram Eldar_, May 16 2020