A334903 Numbers k such that k and k+2 are both infinitary practical numbers (A334901).
6, 40, 54, 918, 1240, 1288, 1408, 1480, 1672, 1720, 1768, 1974, 2440, 2728, 2838, 2968, 3198, 3318, 4134, 4264, 4422, 4480, 4758, 5248, 6102, 6270, 6424, 7590, 7830, 10624, 11128, 13110, 13182, 14248, 15496, 15928, 16254, 16768, 18088, 19864, 21112, 21318, 21630
Offset: 1
Keywords
Examples
6 is a term since 6 and 6 + 2 = 8 are both infinitary practical numbers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
bin[n_] := 2^(-1 + Position[Reverse @ IntegerDigits[n, 2], ?(# == 1 &)] // Flatten); f[p, e_] := p^bin[e]; icomp[n_] := Flatten[f @@@ FactorInteger[n]]; fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; infPracQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, r = Sort[icomp[n]]; Do[If[r[[i]] > 1 + isigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[r]}]; ok]]]; seq = {}; q1 = infPracQ[2]; Do[q2 = infPracQ[n]; If[q1 && q2, AppendTo[seq, n - 2]]; q1 = q2, {n, 4, 10^4, 2}]; seq