This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334913 #27 Jul 16 2021 01:34:57 %S A334913 0,1,1,0,1,2,0,0,1,2,2,-1,0,1,0,0,1,2,2,1,2,3,-1,-1,0,1,1,-1,0,1,0,0, %T A334913 1,2,2,1,2,3,1,1,2,3,3,-2,-1,0,-1,-1,0,1,1,0,1,2,-1,-1,0,1,1,-1,0,1,0, %U A334913 0,1,2,2,1,2,3,1,1,2,3,3,0,1,2,1,1,2,3,3,2 %N A334913 a(n) is the sum of digits of n in signed binary nonadjacent form. %H A334913 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational - Ideas, Algorithms, Source Code</a>, 2011, Springer, pp. 61-62. %H A334913 Helmut Prodinger, <a href="http://www.emis.de/journals/INTEGERS/papers/a8/a8.Abstract.html">On binary representations of integers with digits -1,0,1</a>, Integers 0 (2000), #A08. %F A334913 a(n) = hammingweight(A184615(n)) - hammingweight(A184616(n)). - _Joerg Arndt_, Jun 13 2020 %t A334913 BBN[a_] := Module[{n = a, b}, b = IntegerDigits[n, 2]; b = Prepend[b, 0]; %t A334913 l = Length[b]; %t A334913 Do[If[b[[i]] == 2, b[[i]] = 0; b[[i - 1]]++, %t A334913 If[b[[i]] == 1, %t A334913 If[b[[i + 1]] == 1, b[[i - 1]]++; b[[i]] = 0; %t A334913 b[[i + 1]] = -1]]], {i, l - 1, 2, -1}]; %t A334913 If[b[[1]] == 0, b = Delete[b, 1]]; b] %t A334913 Table[a = BBN[i]; sod = 0; l = Length[a]; %t A334913 Do[sod = sod + a[[j]], {j, 1, l}]; sod, {i, 0, 83}] %o A334913 (PARI) %o A334913 bin2naf(x)= %o A334913 { /* Compute (nonadjacent) signed binary representation of x: */ %o A334913 local(xh, x3, c, np, nm); %o A334913 xh = x >> 1; %o A334913 x3 = x + xh; %o A334913 c = bitxor(xh, x3); %o A334913 np = bitand(x3, c); /* bits == +1 */ %o A334913 nm = bitand(xh, c); /* bits == -1 */ %o A334913 return([np, nm]); /* np-nm==x */ %o A334913 } %o A334913 a(n) = my(b=bin2naf(n)); return(hammingweight(b[1])-hammingweight(b[2])); %o A334913 vector(99,n,a(n-1)) \\ _Joerg Arndt_, Jun 13 2020 %Y A334913 Cf. A000120, A001045, A007302, A184615, A184616. %K A334913 base,easy,sign %O A334913 0,6 %A A334913 _Lei Zhou_, May 16 2020