This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334918 #16 May 25 2020 04:21:26 %S A334918 0,1,2,3,4,5,6,7,8,9,14,15,16,17,21,22,24,27,30,31,32,33,40,45,51,54, %T A334918 62,63,64,65,72,73,85,86,93,94,96,99,104,107,118,119,126,127,128,129, %U A334918 153,158,165,168,182,189,195,200,214,219,224,231,254,255,256,257 %N A334918 Numbers whose XOR-triangles have reflection symmetry. %C A334918 There are three possible axes of symmetry: %C A334918 . %C A334918 . V %C A334918 . U W %C A334918 . ._____._____. %C A334918 . \ . . / %C A334918 . \ . / %C A334918 . . . %C A334918 . . \ . / . %C A334918 . W \ / U %C A334918 . . %C A334918 . %C A334918 . V %C A334918 . %C A334918 - symmetry through axis U-U is only possible for the numbers 0 and 1, %C A334918 - symmetry through axis V-V corresponds to binary palindromes, %C A334918 - symmetry through axis W-W corresponds to number k such that A334727(k) is a binary palindrome, %C A334918 - 0 and 1 are the only terms whose XOR-triangles have the three symmetries, %C A334918 - XOR-triangles of other terms have only one kind of symmetry. %H A334918 Rémy Sigrist, <a href="/A334918/b334918.txt">Table of n, a(n) for n = 1..10000</a> %H A334918 Rémy Sigrist, <a href="/A334918/a334918.png">Triangles illustrating the initial terms</a> (binary palindromes are rendered in red) %H A334918 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A334918 <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a> %e A334918 The XOR-triangles for a(15) = 21 and a(16) = 22 are as follows (with dots instead of 0's for clarity): %e A334918 1 . 1 . 1 1 . 1 1 . %e A334918 1 1 1 1 1 1 . 1 %e A334918 . . . . 1 1 %e A334918 . . 1 . %e A334918 . 1 %o A334918 (PARI) is(n) = { my (b=binary(n)); if (b==Vecrev(b), return (1), my (w=#b-1, x=n); for (k=0, w, if (bittest(n,k)!=bittest(x,0), return (0)); x=bitxor(x,x\2)); return (1)) } %Y A334918 Cf. A006995, A334556 (rotational symmetry), A334727. %K A334918 nonn,base %O A334918 1,3 %A A334918 _Rémy Sigrist_, May 16 2020