This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334922 #30 Aug 03 2020 00:22:21 %S A334922 1,2,2,3,3,3,4,5,5,4,5,6,8,6,5,6,8,10,10,8,6,7,9,13,12,13,9,7,8,11,15, %T A334922 16,16,15,11,8,9,12,18,18,21,18,18,12,9,10,14,20,22,24,24,22,20,14,10, %U A334922 11,15,23,24,29,27,29,24,23,15,11 %N A334922 Square array T(n,k) = ((3/2)*n*k + (1/2)*A319929(n,k))/2, n >= 1, k >= 1, read by antidiagonals. %C A334922 T(n,k) is commutative, associative, has identity element 1 and has 0. Also it is distributive except when an even number is partitioned into two odd numbers. Thus it has a multiplicative structure similar to that of A319929, A322630, A322744 and A327259 except that T(odd,odd) is not always odd, T(even,even) is not always even and T(odd,even) is not always even. %C A334922 T(n,k) is in the same form as the supplementary arrays of A327263 called U(i;n,k). Here (and in A334923) i is being incremented by 1/2. When i is incremented by 1/4 or less, array values cease to be all integers, although all of the multiplication rules still hold. %H A334922 David Lovler, <a href="/A334922/b334922.txt">Table of n, a(n) for n = 1..465</a> %F A334922 T(n,k) = 3*floor(n/2)*floor(k/2) + A319929(n,k). %F A334922 T(n,k) = (A322630(n,k) + n*k)/2. %F A334922 T(n,k) = (A319929 + A322744(n,k))/2. %F A334922 T(n,k) = 2*n*k - A334923(n,k). %e A334922 Array begins: %e A334922 1 2 3 4 5 6 7 8 9 10 ... %e A334922 2 3 5 6 8 9 11 12 14 15 ... %e A334922 3 5 8 10 13 15 18 20 23 25 ... %e A334922 4 6 10 12 16 18 22 24 28 30 ... %e A334922 5 8 13 16 21 24 29 32 37 40 ... %e A334922 6 9 15 18 24 27 33 36 42 45 ... %e A334922 7 11 18 22 29 33 40 44 51 55 ... %e A334922 8 12 20 24 32 36 44 48 56 60 ... %e A334922 9 14 23 28 37 42 51 56 65 70 ... %e A334922 10 15 25 30 40 45 55 60 70 75 ... %e A334922 ... %t A334922 Table[Function[n, ((3/2)*n*k + (1/2)*If[OddQ@ n, If[OddQ@ k, n + k - 1, k], If[OddQ@ k, n, 0]])/2][m - k + 1], {m, 11}, {k, m}] // Flatten (* _Michael De Vlieger_, Jun 23 2020 *) %Y A334922 Cf. A319929, A322630, A322744, A327259, A327263, A334923. %K A334922 nonn,tabl %O A334922 1,2 %A A334922 _David Lovler_, May 16 2020