cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334924 G.f.: Sum_{k>=1} x^(k^2*(k + 1)/2) / (1 - x^(k^2*(k + 1)/2)).

This page as a plain text file.
%I A334924 #11 Feb 16 2025 08:34:00
%S A334924 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,
%T A334924 1,3,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,
%U A334924 1,1,1,3,1,1,2,1,1,2,1,2,1,1,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,1,1,1
%N A334924 G.f.: Sum_{k>=1} x^(k^2*(k + 1)/2) / (1 - x^(k^2*(k + 1)/2)).
%C A334924 Number of pentagonal pyramidal numbers (A002411) dividing n.
%H A334924 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalPyramidalNumber.html">Pentagonal Pyramidal Number</a>.
%F A334924 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/3 - 2 = A195055 - 2 = 1.289868... . - _Amiram Eldar_, Jan 02 2024
%t A334924 nmax = 100; CoefficientList[Series[Sum[x^(k^2 (k + 1)/2)/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A334924 Cf. A002411, A007862, A195055, A279495, A279496, A279497.
%K A334924 nonn
%O A334924 1,6
%A A334924 _Ilya Gutkovskiy_, May 16 2020