cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334925 G.f.: Sum_{k>=1} x^(k*(k^2 + 1)/2) / (1 - x^(k*(k^2 + 1)/2)).

This page as a plain text file.
%I A334925 #11 Jan 02 2024 02:48:33
%S A334925 1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,2,
%T A334925 2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,3,1,1,2,
%U A334925 1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2
%N A334925 G.f.: Sum_{k>=1} x^(k*(k^2 + 1)/2) / (1 - x^(k*(k^2 + 1)/2)).
%C A334925 Number of divisors of n of the form k*(k^2 + 1)/2 (A006003).
%F A334925 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (A248177 + A001620) = 1.343731... . - _Amiram Eldar_, Jan 02 2024
%t A334925 nmax = 100; CoefficientList[Series[Sum[x^(k (k^2 + 1)/2)/(1 - x^(k (k^2 + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%Y A334925 Cf. A006003, A007862, A279495, A300409, A334926.
%Y A334925 Cf. A001620, A248177.
%K A334925 nonn
%O A334925 1,5
%A A334925 _Ilya Gutkovskiy_, May 16 2020