A334929 Positive integers k such that there exists a positive integer m consisting of k identical digits and such that m is a multiple of k.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 22, 24, 27, 36, 42, 44, 45, 54, 63, 66, 72, 78, 81, 84, 88, 108, 111, 126, 132, 135, 156, 162, 168, 189, 198, 205, 216, 222, 234, 242, 243, 252, 264, 294, 312, 324, 333, 342, 378, 396, 404, 405, 444, 462, 465, 468, 484, 486
Offset: 1
Examples
12 is a term since 444444444444 = 12*37037037037.
Crossrefs
Cf. A014950.
Programs
-
Mathematica
ok[n_] := AnyTrue[(10^n - 1)/9 Range@9, Mod[#, n] == 0 &]; Select[ Range[486], ok] (* Giovanni Resta, May 24 2020 *)
-
Python
t = "1" list = [1] for i in range(1, 1000): t = "1" + t m = int(t) weiter = 0 for k in range(1, 10): if k * m % (i + 1) == 0: weiter = 1 if weiter == 1: list.append(i + 1) print(list)
Comments