This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334932 #17 Jun 21 2020 06:03:42 %S A334932 2535,3705,162279,237177,10385895,15179385,664697319,971480697, %T A334932 42540628455,62174764665,2722600221159,3979184938617,174246414154215, %U A334932 254667836071545,11151770505869799,16298741508578937,713713312375667175,1043119456549052025,45677651992042699239 %N A334932 Numbers that generate rotationally symmetrical XOR-triangles with a pattern of zero-triangles of edge length 3, some of which are clipped to result in some zero-triangles of edge length 2 at the edges. %C A334932 Subset of A334769 which is a subset of A334556. %C A334932 Numbers m in this sequence A070939(m) (mod 3) = 0. All m have first and last bits = 1. %C A334932 The numbers in this sequence can be constructed using run lengths of bits thus: 12..(42)..3 or the reverse 3..(24)..21, with at least one copy of the pair of parenthetic numbers. %C A334932 Thus, the smallest number m has run lengths {1, 2, 4, 2, 3}, which is the binary 100111100111 = decimal 2535. %C A334932 2n has the reverse run length pattern as 2n - 1. a(3) has the run lengths {1, 2, 4, 2, 4, 2, 3}, while a(4) has {3, 2, 4, 2, 4, 2, 1}, etc. %H A334932 Michael De Vlieger, <a href="/A334932/b334932.txt">Table of n, a(n) for n = 1..1104</a> %H A334932 Michael De Vlieger, <a href="/A334932/a334932.png">Diagram montage</a> of XOR-triangles resulting from a(n) with 1 <= n <= 32. %H A334932 Michael De Vlieger, <a href="http://vincico.com/seq/a334769.html">Central zero-triangles in rotationally symmetrical XOR-Triangles</a>, 2020. %H A334932 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A334932 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,65,0,-64). %H A334932 <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a> %F A334932 From _Colin Barker_, Jun 09 2020: (Start) %F A334932 G.f.: 3*x*(13 + 19*x)*(65 - 64*x^2) / ((1 - x)*(1 + x)*(1 - 8*x)*(1 + 8*x)). %F A334932 a(n) = 65*a(n-2) - 64*a(n-4) for n>4. %F A334932 a(n) = (1/21)*(-16 - 3*(-1)^n + 123*2^(5+3*n) - 85*(-1)^n*2^(5 + 3*n)) for n>0. %F A334932 (End) %e A334932 Diagrams of a(1)-a(4), replacing “0” with “.” and “1” with “@” for clarity: %e A334932 a(1) = 2535 (a(2) = 3705 appears as a mirror image): %e A334932 @ . . @ @ @ @ . . @ @ @ %e A334932 @ . @ . . . @ . @ . . %e A334932 @ @ @ . . @ @ @ @ . %e A334932 . . @ . @ . . . @ %e A334932 . @ @ @ @ . . @ %e A334932 @ . . . @ . @ %e A334932 @ . . @ @ @ %e A334932 @ . @ . . %e A334932 @ @ @ . %e A334932 . . @ %e A334932 . @ %e A334932 @ %e A334932 . %e A334932 a(3) = 162279 (a(4) = 237177 appears as a mirror image): %e A334932 @ . . @ @ @ @ . . @ @ @ @ . . @ @ @ %e A334932 @ . @ . . . @ . @ . . . @ . @ . . %e A334932 @ @ @ . . @ @ @ @ . . @ @ @ @ . %e A334932 . . @ . @ . . . @ . @ . . . @ %e A334932 . @ @ @ @ . . @ @ @ @ . . @ %e A334932 @ . . . @ . @ . . . @ . @ %e A334932 @ . . @ @ @ @ . . @ @ @ %e A334932 @ . @ . . . @ . @ . . %e A334932 @ @ @ . . @ @ @ @ . %e A334932 . . @ . @ . . . @ %e A334932 . @ @ @ @ . . @ %e A334932 @ . . . @ . @ %e A334932 @ . . @ @ @ %e A334932 @ . @ . . %e A334932 @ @ @ . %e A334932 . . @ %e A334932 . @ %e A334932 @ %t A334932 Array[FromDigits[Flatten@ MapIndexed[ConstantArray[#2, #1] & @@ {#1, Mod[First[#2], 2]} &, If[EvenQ@ #1, Reverse@ #2, #2]], 2] & @@ {#, Join[{1, 2}, PadRight[{}, Ceiling[#, 2], {4, 2}], {3}]} &, 19] %t A334932 (* Generate a textual plot of XOR-triangle T(n) *) %t A334932 xortri[n_Integer] := TableForm@ MapIndexed[StringJoin[ConstantArray[" ", First@ #2 - 1], StringJoin @@ Riffle[Map[If[# == 0, "." (* 0 *), "@" (* 1 *)] &, #1], " "]] &, NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]] %Y A334932 Cf. A334556, A334769, A334930, A334931. %K A334932 nonn,easy %O A334932 1,1 %A A334932 _Michael De Vlieger_, May 16 2020