cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334945 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists successive blocks of k consecutive integers that differ by 3, where the m-th block starts with m, m >= 1, and the first element of column k is in the row that is the k-th pentagonal number (A000326).

This page as a plain text file.
%I A334945 #26 Dec 19 2020 07:56:27
%S A334945 1,2,3,4,5,1,6,4,7,2,8,5,9,3,10,6,11,4,12,7,1,13,5,4,14,8,7,15,6,2,16,
%T A334945 9,5,17,7,8,18,10,3,19,8,6,20,11,9,21,9,4,22,12,7,1,23,10,10,4,24,13,
%U A334945 5,7,25,11,8,10,26,14,11,2,27,12,6,5,28,15,9,8,29,13,12,11,30,16,7,3
%N A334945 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists successive blocks of k consecutive integers that differ by 3, where the m-th block starts with m, m >= 1, and the first element of column k is in the row that is the k-th pentagonal number (A000326).
%C A334945 This triangle can be interpreted as a table of partitions into consecutive parts that differ by 3 (see the Example section).
%C A334945 Also, every triangle of this family has the property that starting from row n the sum of k positive and consecutive terms in the column k is equal to n. - _Omar E. Pol_, Dec 18 2020
%e A334945 Triangle begins:
%e A334945    1;
%e A334945    2;
%e A334945    3;
%e A334945    4;
%e A334945    5,  1;
%e A334945    6,  4;
%e A334945    7,  2;
%e A334945    8,  5;
%e A334945    9,  3;
%e A334945   10,  6;
%e A334945   11,  4;
%e A334945   12,  7,  1;
%e A334945   13,  5,  4;
%e A334945   14,  8,  7;
%e A334945   15,  6,  2;
%e A334945   16,  9,  5;
%e A334945   17,  7,  8;
%e A334945   18, 10,  3;
%e A334945   19,  8,  6;
%e A334945   20, 11,  9;
%e A334945   21,  9,  4;
%e A334945   22, 12,  7,  1;
%e A334945 ...
%e A334945 Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts that differ by 3:
%e A334945 .   -----------------------------------------------------
%e A334945 Fig:   A     B     C     D       E        F        G
%e A334945 .   -----------------------------------------------------
%e A334945 . n:   1     2     3     4       5        6        7
%e A334945 Row -----------------------------------------------------
%e A334945 1   | [1];|  1; |  1; |  1; |  1;     |  1;   |  1;     |
%e A334945 2   |     | [2];|  2; |  2; |  2;     |  2;   |  2;     |
%e A334945 3   |     |     | [3];|  3; |  3;     |  3;   |  3;     |
%e A334945 4   |     |     |     | [4];|  4;     |  4;   |  4;     |
%e A334945 5   |     |     |     |     | [5],[1];|  5, 1;|  5,  1; |
%e A334945 6   |     |     |     |     |  6, [4];| [6],4;|  6,  4; |
%e A334945 7   |     |     |     |     |         |       | [7],[2];|
%e A334945 8   |     |     |     |     |         |       |  8, [5];|
%e A334945 .   -----------------------------------------------------
%e A334945 Figure G: for n = 7 the partitions of 7 into consecutive parts that differ by 3 (but with the parts in increasing order) are [7] and [2, 5]. These partitions have one part and two parts respectively. On the other hand  we can find the mentioned partitions in the columns 1 and 2 of this table, starting at the row 7.
%e A334945 .
%e A334945 Illustration of initial terms arranged into a triangular structure:
%e A334945 .                                                           _
%e A334945 .                                                         _|1|
%e A334945 .                                                       _|2  |
%e A334945 .                                                     _|3    |
%e A334945 .                                                   _|4     _|
%e A334945 .                                                 _|5      |1|
%e A334945 .                                               _|6       _|4|
%e A334945 .                                             _|7        |2  |
%e A334945 .                                           _|8         _|5  |
%e A334945 .                                         _|9          |3    |
%e A334945 .                                       _|10          _|6    |
%e A334945 .                                     _|11           |4     _|
%e A334945 .                                   _|12            _|7    |1|
%e A334945 .                                 _|13             |5      |4|
%e A334945 .                               _|14              _|8     _|7|
%e A334945 .                             _|15               |6      |2  |
%e A334945 .                           _|16                _|9      |5  |
%e A334945 .                         _|17                 |7       _|8  |
%e A334945 .                       _|18                  _|10     |3    |
%e A334945 .                     _|19                   |8        |6    |
%e A334945 .                   _|20                    _|11      _|9    |
%e A334945 .                 _|21                     |9        |4     _|
%e A334945 .                |22                       |12       |7    |1|
%e A334945 ...
%e A334945 The number of horizontal line segments in the n-th row of the diagram equals A117277(n), the number of partitions of n into consecutive parts that differ by 3.
%Y A334945 Tables of the same family where the consecutive parts differ by d are A010766 (d=0), A286001 (d=1), A332266 (d=2), this sequence (d=3), A334618(d=4).
%Y A334945 Cf. A000326, A117277, A330887, A330888, A330889, A334463.
%K A334945 nonn,tabf
%O A334945 1,2
%A A334945 _Omar E. Pol_, May 27 2020