cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334958 GCD of consecutive terms of the factorial times the alternating harmonic series.

This page as a plain text file.
%I A334958 #45 Oct 27 2020 08:48:13
%S A334958 1,1,1,2,2,12,12,48,144,1440,1440,17280,17280,241920,18144000,
%T A334958 145152000,145152000,2612736000,2612736000,10450944000,219469824000,
%U A334958 4828336128000,4828336128000,115880067072000,579400335360000,15064408719360000,135579678474240000,26573616980951040000,26573616980951040000
%N A334958 GCD of consecutive terms of the factorial times the alternating harmonic series.
%C A334958 For n = 1..14, we have a(n) = A025527(n), but a(15) = 18144000 <> 3628800 = A025527(15).
%C A334958 It appears that A025527(n) | a(n) for all n >= 1 and A025527(n) = a(n) for infinitely many n. In addition, it seems that a(n)/a(n-1) = A048671(n) for infinitely many n >= 2. However, I have not established these claims.
%C A334958 This sequence appears in formulas for sequences A075827, A075828, A075829, and A075830 (the first one of which was established in 2002 by _Michael Somos_).
%C A334958 Conjecture: a(n) = n! * Product_{p <= n} p^min(0, v_p(H'(n))), where the product ranges over primes p, H'(n) = Sum_{k=1..n} (-1)^(k+1)/k, and v_p(r) is the p-adic valuation of rational r (checked for n < 1100).
%F A334958 a(n) = gcd(A024167(n+1), A024167(n)) = gcd(A024168(n+1), A024168(n)) = gcd(A024167(n), n!) = gcd(A024168(n), n!) = gcd(A024167(n), A024168(n)).
%e A334958 A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
%p A334958 b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
%p A334958 a:= n-> (f-> igcd(b(n)*f, f))(n!):
%p A334958 seq(a(n), n=1..30);  # _Alois P. Heinz_, May 18 2020
%t A334958 b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
%t A334958 a[n_] := GCD[b[n] #, #]&[n!];
%t A334958 Array[a, 30] (* _Jean-François Alcover_, Oct 27 2020, after _Alois P. Heinz_ *)
%o A334958 (SageMath)
%o A334958 def A():
%o A334958     a, b, n = 1, 1, 2
%o A334958     while True:
%o A334958         yield gcd(a, b)
%o A334958         b, a = a, a + b * n * n
%o A334958         n += 1
%o A334958 a = A(); print([next(a) for _ in range(29)]) # _Peter Luschny_, May 19 2020
%Y A334958 Cf. A000142, A024167, A024168, A025527, A048671, A058312, A058313, A075827, A075828, A075829, A075830.
%Y A334958 Cf. A056612 (similar sequence for the harmonic series).
%K A334958 nonn
%O A334958 1,4
%A A334958 _Petros Hadjicostas_, May 17 2020