cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334964 Numbers that are the sum of three coprime positive cubes.

This page as a plain text file.
%I A334964 #22 Jul 23 2025 16:01:59
%S A334964 3,10,17,29,36,43,55,62,66,73,92,99,118,127,129,134,141,153,155,160,
%T A334964 179,190,197,216,218,225,244,251,253,258,277,281,307,314,342,345,349,
%U A334964 352,359,368,371,378,397,405,408,415,433,434,466,469,471,476,495,514,521,532,540,547,557,560,566,567
%N A334964 Numbers that are the sum of three coprime positive cubes.
%C A334964 The greatest common divisor of the three cubes must be 1, but they need not be pairwise coprime.
%H A334964 Robert Israel, <a href="/A334964/b334964.txt">Table of n, a(n) for n = 1..10000</a>
%H A334964 <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>
%e A334964 a(3)=17 is in the sequence because 17 = 1^3 + 2^3 + 2^3 with gcd(1,2,2)=1.
%p A334964 N:= 1000: # for all terms <= N
%p A334964 S:= {seq(seq(seq(x^3+y^3+z^3, z=select(t -> igcd(x,y,t)=1, [$y..floor((N-x^3-y^3)^(1/3))])), y=x..floor(((N-x^3)/2)^(1/3))), x=1..floor((N/3)^(1/3)))}:
%p A334964 sort(convert(S, list));
%o A334964 (PARI) list(lim)=my(v=List(),s,g,x3); lim\=1; if(lim<3, return([])); for(x=1,sqrtnint(lim\3,3), x3=x^3; for(y=x,sqrtnint((lim-x3)\2,3), s=x3+y^3; g=gcd(x,y); if(g>1, for(z=y,sqrtnint(lim-s,3), if(gcd(g,z)==1, listput(v,s+z^3))), for(z=y,sqrtnint(lim-s,3), listput(v,s+z^3))))); Set(v) \\ _Charles R Greathouse IV_, May 18 2020
%Y A334964 Cf. A202679.
%K A334964 nonn
%O A334964 1,1
%A A334964 _Robert Israel_, May 17 2020