This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334965 #7 May 21 2020 21:19:18 %S A334965 1,2,3,4,5,7,8,9,11,13,16,17,18,19,23,25,27,29,31,32,37,41,43,47,49, %T A334965 50,53,54,59,61,64,67,71,73,75,79,81,83,89,97,98,101,103,107,108,109, %U A334965 113,121,125,127,128,131,137,139,147,149,151,157,162,163,167,169 %N A334965 Numbers with strictly increasing prime multiplicities. %C A334965 First differs from A329131 in lacking 150. %C A334965 Also numbers whose unsorted prime signature is strictly increasing. %e A334965 The sequence of terms together with their prime indices begins: %e A334965 1: {} 25: {3,3} 64: {1,1,1,1,1,1} %e A334965 2: {1} 27: {2,2,2} 67: {19} %e A334965 3: {2} 29: {10} 71: {20} %e A334965 4: {1,1} 31: {11} 73: {21} %e A334965 5: {3} 32: {1,1,1,1,1} 75: {2,3,3} %e A334965 7: {4} 37: {12} 79: {22} %e A334965 8: {1,1,1} 41: {13} 81: {2,2,2,2} %e A334965 9: {2,2} 43: {14} 83: {23} %e A334965 11: {5} 47: {15} 89: {24} %e A334965 13: {6} 49: {4,4} 97: {25} %e A334965 16: {1,1,1,1} 50: {1,3,3} 98: {1,4,4} %e A334965 17: {7} 53: {16} 101: {26} %e A334965 18: {1,2,2} 54: {1,2,2,2} 103: {27} %e A334965 19: {8} 59: {17} 107: {28} %e A334965 23: {9} 61: {18} 108: {1,1,2,2,2} %t A334965 Select[Range[100],Less@@Last/@FactorInteger[#]&] %Y A334965 These are the Heinz numbers of the partitions counted by A100471. %Y A334965 Partitions with strictly decreasing run-lengths are A100881. %Y A334965 Partitions with weakly decreasing run-lengths are A100882. %Y A334965 Partitions with weakly increasing run-lengths are A100883. %Y A334965 The weakly decreasing version is A242031. %Y A334965 The weakly increasing version is A304678. %Y A334965 The strictly decreasing version is A304686. %Y A334965 Compositions with strictly increasing or decreasing run-lengths are A333191. %Y A334965 Cf. A000837, A032020, A098859, A100883, A329744, A332835, A333147, A333190. %K A334965 nonn %O A334965 1,2 %A A334965 _Gus Wiseman_, May 18 2020