cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334973 Odd bi-unitary admirable numbers: the odd terms of A334972.

This page as a plain text file.
%I A334973 #5 May 18 2020 19:57:47
%S A334973 945,43065,46035,48195,80535,354585,403095,430815,437745,442365,
%T A334973 458055,2305875,3525795,4404105,4891887,5388495,5803245,6126645,
%U A334973 6220665,6375105,6537375,7853625,7981875,8109585,8731125,9071865,9338595,9784125,13241745,13351635,23760555
%N A334973 Odd bi-unitary admirable numbers: the odd terms of A334972.
%C A334973 Of the first 10^4 bi-unitary admirable numbers only 11 are odd.
%t A334973 fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1, 5*10^5, 2], buAdmQ]
%Y A334973 The bi-unitary version of A109729.
%Y A334973 Intersection of A005408 and A334972.
%Y A334973 Subsequence of A293186.
%Y A334973 Cf. A329188, A334975.
%K A334973 nonn
%O A334973 1,1
%A A334973 _Amiram Eldar_, May 18 2020