cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334985 a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

This page as a plain text file.
%I A334985 #59 Sep 08 2022 08:46:25
%S A334985 1,6,12,168,30,18,56,960,351,450,132,6048,182,588,1800,158720,306,
%T A334985 25272,380,84000,14112,2178,552,414720,11625,7098,29160,32928,870,
%U A334985 405000,992,2064384,17424,15606,58800,917070336,1406,10830,85176,11520000,1722,3111696
%N A334985 a(n) = lcm(n, tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).
%F A334985 a(n) = lcm(tau(n), sigma(n), pod(n)) / gcd(n, tau(n), sigma(n)).
%F A334985 a(n) = A336723(n) / A337323(n).
%e A334985 a(6) = lcm(6, tau(6), sigma(6), pod(6)) / gcd(6, tau(6), sigma(6), pod(6))  = lcm(6, 4, 12, 36) / gcd(6, 4, 12, 36) = 36 / 2 = 18.
%t A334985 a[n_] := LCM @@ {(d = DivisorSigma[0, n]), (s = DivisorSigma[1, n]), n^(d/2)} / GCD @@ {n, d, s}; Array[a, 50] (* _Amiram Eldar_, Sep 22 2020 *)
%o A334985 (Magma) [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]) / GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
%o A334985 (PARI) a(n) = my(f=factor(n), v=[n, numdiv(f), sigma(f), vecprod(divisors(f))]); lcm(v)/gcd(v); \\ _Michel Marcus_, Sep 22 2020
%Y A334985 Cf. A336722, A336723, A337323.
%Y A334985 Cf. A329929 (lcm(tau(n), sigma(n), pod(n)) / gcd(tau(n), sigma(n), pod(n))).
%K A334985 nonn
%O A334985 1,2
%A A334985 _Jaroslav Krizek_, Sep 22 2020