This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334987 #12 Feb 16 2025 08:34:00 %S A334987 1,1,1,5,1,1,1,5,1,11,1,5,1,1,1,5,1,1,20,15,1,1,1,5,1,1,1,5,1,11,32,5, %T A334987 1,1,1,5,1,20,1,15,1,1,1,5,1,47,1,5,1,11,1,5,1,1,1,5,20,1,1,15,1,32,1, %U A334987 69,1,1,1,5,1,11,1,5,1,1,1,24,1,1,1,15,1,1,1,5,86,1,1,5,1,11 %N A334987 Sum of centered triangular numbers dividing n. %H A334987 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CenteredTriangularNumber.html">Centered Triangular Number</a> %F A334987 G.f.: Sum_{k>=1} (3*k*(k - 1)/2 + 1) * x^(3*k*(k - 1)/2 + 1) / (1 - x^(3*k*(k - 1)/2 + 1)). %F A334987 L.g.f.: log(G(x)), where G(x) is the g.f. for A280950. %t A334987 nmax = 90; CoefficientList[Series[Sum[(3 k (k - 1)/2 + 1) x^(3 k (k - 1)/2 + 1)/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %t A334987 nmax = 90; CoefficientList[Series[Log[Product[1/(1 - x^(3 k (k - 1)/2 + 1)), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest %o A334987 (PARI) isc(n) = my(k=(2*n-2)/3, m); (n==1) || ((denominator(k)==1) && (m=sqrtint(k)) && (m*(m+1)==k)); %o A334987 a(n) = sumdiv(n, d, if (isc(d), d)); \\ _Michel Marcus_, May 19 2020 %Y A334987 Cf. A005448, A185027, A280950, A300409, A334988. %K A334987 nonn %O A334987 1,4 %A A334987 _Ilya Gutkovskiy_, May 18 2020